TN

Cho pt: \(x^2-(m-2)x+m-3 \)(1)

Tìm giá trị của m để phương trình (1) có hai nghiệm phân biệt x1, x2 là độ dài 2 cạnh của một tam giác vuông cân
 

H24
27 tháng 4 2022 lúc 23:33

ta có 

△=(m-2)2-4(m-3)=m2-4m+4-4m+12=m2-8m+16=(m-4)2

để phương trình có 2 nghiệm phân biệt thì △>0 suy ra m≠4

nhận xét:

x1,x2 là độ dài của 2 tam giác vuông cân mà x1,x2 phân biệt nên

x1=\(-x2\) vì độ dài thì sẽ bằng |x1| và |x2|

áp dụng hệ thức vi-et ta có:

\(​​​​\begin{cases} x1+x2=m-2(1)\\ x1x2=m-3(2) \end{cases}\)→x1+x2-1=x1x2 \(\Leftrightarrow \)(x1-1)(x2-1)=0

\(\Leftrightarrow \)\(\left[\begin{array}{} x1=1\\ x2=1 \end{array} \right.\)\(\Leftrightarrow \)x1x2=-1(vì x1=-x2) \(\Leftrightarrow \)m-3=-1\(\Leftrightarrow \)m=2

vậy m=2 thì....

Bình luận (0)