Bài 4: Công thức nghiệm của phương trình bậc hai

JE

Cho pt \(x^2-4x+m-3=0\) (x là ẩn, m là tham số)

a) Giải PT khi m= -3 (mk tự lm đc)

b) Tìm giá trị của m để pt có 1 nghiệm bằng 2. Tính nghiệm còn lại

c) Tìm giá trị của m để pt có nghiệm

d) Tìm giá trị của m để pt có nghiệm này gấp bốn nghiệm kia

NL
24 tháng 3 2019 lúc 19:56

b/ Do x=2 là một nghiệm, thay \(x=2\) vào pt ta được:

\(4-8+m-3=0\Rightarrow m=7\)

\(x_2=\frac{-b}{a}-x_1=4-2=2\)

c/ Để pt có nghiệm \(\Leftrightarrow\Delta'\ge0\)

\(\Rightarrow4-\left(m-3\right)\ge0\Leftrightarrow m\le7\)

d/ Kết hợp điều kiện bài toán và hệ thức Viet ta có:

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1=4x_2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x_2=4\\x_1=4x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{16}{5}\\x_2=\frac{4}{5}\end{matrix}\right.\)

\(x_1x_2=m-3\Rightarrow m-3=\frac{64}{25}\Rightarrow m=\frac{139}{25}\)

Bình luận (0)
JE
24 tháng 3 2019 lúc 19:50

Nguyễn Việt Lâm giúp mk nhá, thanks bn nhìu :>>>

Bình luận (0)

Các câu hỏi tương tự
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
GA
Xem chi tiết
NK
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết