Chương IV - Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

QH

Cho pt x^2 -2(m-1).x-4m = 0 a) tìm m để pt có 2 nghiệm dương b) tìn m để pt có 2 nghiệm âm phân biệt

KL
15 tháng 3 2023 lúc 16:24

∆' = m² - 2m + 1 + 4m

= m² + 2m + 1

= (m + 1)² ≥ 0 với mọi m

a) Để phương trình có hai nghiệm dương thì:

S = x₁ + x₂ = 2(m - 1) > 0

P = x₁.x₂ = -4m > 0

*) 2(m - 1) > 0

m - 1 > 0

m > 1 (1)

*) -4m > 0

m < 0 (2)

Kết hợp (1) và (2) ta suy ra không tìm được m để phương trình có hai nghiệm dương.

b) Để phương trình có hai nghiệm âm phân biệt thì

∆ > 0; S < 0; P > 0

*) ∆ > 0 

⇔ (m + 1)² > 0

⇔ m + 1 ≠ 0

⇔ m ≠ -1  (3)

*) S = 2(m - 1) < 0

⇔ m - 1 < 0

⇔ m < 1   (4)

*) P > 0

⇔ -4m < 0

⇔ m < 0   (5)

Từ (3), (4) và (5) ⇒ m < 1

Vậy với m < 1 thì phương trình đã cho có hai nghiệm âm phân biệt

Bình luận (0)
H24
15 tháng 3 2023 lúc 16:02

\(x^2-2\left(m-1\right)x-4m=0\)

\(b,\) Để pt có 2 nghiệm âm phân biệt thì \(\left\{{}\begin{matrix}a\ne0\\-\dfrac{b}{a}< 0\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{2\left(m-1\right)}{1}< 0\)

\(\Leftrightarrow2m-2< 0\)

\(\Leftrightarrow2m< 2\)

\(\Leftrightarrow m< 1\)

Vậy m < 1 thì pt có 2 nghiệm âm phân biệt

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
NA
Xem chi tiết
ND
Xem chi tiết
NK
Xem chi tiết
NL
Xem chi tiết
QH
Xem chi tiết
TP
Xem chi tiết
TT
Xem chi tiết
HN
Xem chi tiết