Violympic toán 9

H24

Cho PT \(ax^2-bx+b=0\)(ab>0) có các nghiệm là x1, x2. CMR x1>0. x2>0 và \(\sqrt{\frac{x_1}{x_2}}+\sqrt{\frac{x_2}{x_1}}-\sqrt{\frac{b}{a}}=0\)

NL
30 tháng 6 2020 lúc 14:26

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{b}{a}=\frac{ab}{a^2}>0\\x_1x_2=\frac{b}{a}=\frac{ab}{a^2}>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)

\(\sqrt{\frac{x_1}{x_2}}+\sqrt{\frac{x_2}{x_1}}-\sqrt{\frac{b}{a}}=\frac{x_1+x_2}{\sqrt{x_1x_2}}-\sqrt{\frac{b}{a}}=\frac{\frac{b}{a}}{\sqrt{\frac{b}{a}}}-\sqrt{\frac{b}{a}}=\sqrt{\frac{b}{a}}-\sqrt{\frac{b}{a}}=0\)

Bình luận (0)

Các câu hỏi tương tự
AM
Xem chi tiết
LA
Xem chi tiết
AP
Xem chi tiết
AM
Xem chi tiết
NS
Xem chi tiết
AM
Xem chi tiết
NH
Xem chi tiết
BA
Xem chi tiết
AM
Xem chi tiết