Violympic toán 9

NH

giả sử x1 và x2 là nghiệm của pt :\(x^2+2kx+4=0\) Tìm tất cả các giá trị của k sao cho \(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2>=3\)

H24
2 tháng 3 2018 lúc 16:50

tồn tại x1 ; x2=> k thuôc (-vc;-2]U[2;vc)

tồn tại x1,2<>0 ; f(0)<>0<=> luôn đúng => k thuôc (-vc;-2]U[2;vc)

\(A=\left(\dfrac{x_1}{x_2}\right)^2+\left(\dfrac{x_2}{x_1}\right)^2=\left(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}\right)^2-2\)

\(A=\left(\dfrac{x^2_1+x^2_2}{x_1.x_2}\right)^2-2=\left(\dfrac{\left(x_1+x_2\right)^2-2x_1.x_2}{x_1.x_2}\right)^2-2\)

\(A\ge3\Leftrightarrow\left(\dfrac{\left(x_1+x_2\right)^2}{x_1.x_2}-2\right)^2\ge5\)\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\left(x_1+x_2\right)^2}{x_1.x_2}-2\ge\sqrt{5}\left(1\right)\\\dfrac{\left(x_1+x_2\right)^2}{x_1.x_2}-2\le-\sqrt{5}\left(2\right)\end{matrix}\right.\)

(1) \(\dfrac{\left(2k\right)^2}{4}\ge2+\sqrt{5}\Leftrightarrow k^2\ge2+\sqrt{5}\Rightarrow k\in(-\infty;-\sqrt{2+\sqrt{5}}]U[\sqrt{2+\sqrt{5}};+\infty)\)

(2)<=> \(\dfrac{\left(2k\right)^2}{4}\le2-\sqrt{5}\Leftrightarrow k^2\le2-\sqrt{5}\left(l\right)\)

kết hợp nghiệm \(k\in(-\infty;-\sqrt{2+\sqrt{5}}]U[\sqrt{2+\sqrt{5}};+\infty)\)

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
AP
Xem chi tiết
AP
Xem chi tiết
LT
Xem chi tiết
NH
Xem chi tiết
BB
Xem chi tiết
NL
Xem chi tiết
ND
Xem chi tiết
PQ
Xem chi tiết