Violympic toán 9

LM

Cho pt \(2017x^2-\left(m-2018\right)x-2019=0\) với m là tham số. Tìm m để pt có hai nghiệm x1, x2 thỏa \(\sqrt{x_1^2+2018}-x_1=\sqrt{x_2^2+2018}+x_2\)

NL
18 tháng 5 2020 lúc 14:29

Do \(x_1x_2=-\frac{2019}{2017}< 0\Rightarrow\) pt có 2 nghiệm trái dấu.

\(\sqrt{x_1^2+2018}-x_2=\sqrt{x_2^2+2018}+x_1\)

\(\Rightarrow x_1^2+x_2^2+2018-2x_2\sqrt{x^2_1+2018}=x_1^2+x_2^2+2018+2x_1\sqrt{x_2^2+2018}\)

\(\Leftrightarrow-x_2\sqrt{x_1^2+2018}=x_1\sqrt{x_2^2+2018}\)

\(\Rightarrow x_2^2\left(x_1^2+2018\right)=x_1^2\left(x_2^2+2018\right)\)

\(\Rightarrow x_1^2=x_2^2\Rightarrow x_1=-x_2\) (do \(x_1;x_2\) trái dấu)

\(\Rightarrow x_1+x_2=0\Rightarrow\frac{m-2018}{2017}=0\Rightarrow m=2018\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
PV
Xem chi tiết
AM
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết