Ta có \(A=\frac{2n-1}{n+3}\left(n\ne-3\right)\)
\(\Leftrightarrow A=\frac{2\left(n+3\right)-7}{n+3}=2-\frac{7}{n+3}\)
a) Để A đạt giá trị nguyên thì \(\frac{7}{n+3}\)đạt giá trị nguyên
=> 7 chia hết cho n+3
=> n+3\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
ta có bảng
n+3 | -7 | -1 | 1 | 7 |
n | -10 | -4 | -2 | 4 |
\(A=\frac{2n-1}{n+3}=\frac{2\left(n+3\right)-7}{n+3}=2-\frac{7}{n+3}\)
A nguyên => \(\frac{7}{n+3}\)nguyên
=> \(n+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
n+3 | 1 | -1 | 7 | -7 |
n | -2 | -4 | 4 | -10 |
4n+1/2n+3 =4n+6n−5/2n+3n =2(2n+3)−5/2n+3
Để 2−5/2n+3 là số nguyên <=> 5/2n+3 là số nguyên
=> 2n + 3 thuộc Ư(5) = { - 5; - 1; 1; 5 }
=> 2n + 3 = { - 5; - 1; 1; 5 }
=> n = { - 4; - 2; - 1 ; 1 }
b) Ta có \(A=2-\frac{7}{n+3}\left(n\ne-3\right)\)
Để A đạt GTNN thì \(\frac{7}{n+3}\)đạt GTNN và \(7⋮n+3\)
=> n+3=-7
=> n=-10 (tm)
vậy để A đạt GTNN thì x=-10