Phương pháp:
Áp dụng định lý Vi-et cho phương trình bậc hai
Phương pháp:
Áp dụng định lý Vi-et cho phương trình bậc hai
Tập hợp những điểm M trên mặt phẳng phức biểu diễn số phức z thỏa mãn z + 1 - i + z - 2 + 3 i = 10 có phương trình là
A. x = 2
B. x 2 25 + 4 y 2 75 = 1
C. x 2 25 + 2 y 2 33 = 1
D. Đ á p á n k h á c
Cho số phức z thỏa mãn 1 + i z là số thực và |z-2|=m với m ∈ R. Gọi m 0 là một giá trị của m để có đúng một số phức thỏa mãn bài toán. Khi đó
A. m 0 ∈ ( 0 ; 1 / 2 )
B. m 0 ∈ ( 1 / 2 ; 1 )
C. m 0 ∈ ( 3 / 2 ; 2 )
D. m 0 ∈ ( 1 ; 3 / 2 )
Cho số phức z thỏa mãn z - 2 + i + z + 1 - i = 13 . Tìm giá trị nhỏ nhất m của biểu thức z - 2 + i
A. m = 1
B. m = 2 13 13
C. m = 13 13
D. m = 1 13
Cho số phức z thỏa mãn (2 - i)z = (2 + i)(1 - 3i). Gọi M là điểm biểu diễn của z. Khi đó tọa độ điểm M là.
A. M(3;1)
B. M(3;-1)
C. M(1;3)
D. M(1;-3)
Xác định tất cả các số thực m để phương trình
z 2 - 2 z + 1 - m = 0 có nghiệm phức z thỏa mãn z = 2 .
A. m = 1 ; m = 9 .
B. m = - 3
C. m = - 3 ; m = 1 ; m = 9 .
D. m = - 3 ; m = 9
Cho số phức z thỏa mãn: z + 2 + i = 4 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của z − 1 − 2 i . Tính S = M + m.
A. 6 2
B. 4 2
C. 2 2
D. 8 2
Gọi S là tập hợp các số nguyên m sao cho tồn tại 2 số phức phân biệt z 1 , z 2 thỏa mãn đồng thời các phương trình z - 1 = z - i và z + 2 m = m + 1 . Tổng các phần tử của S là
A. 1
B. 4
C. 2
D. 3
Gọi S là tổng các số thực m để phương trình z 2 - 2 z + 1 - m = 0 có nghiệm phức thỏa mãn |z|=2. Tính S
A. 6
B. 10
C. -3
D. 7
Cho các số phức z 1 = 1, z 2 = 2 − 3 i và các số z thỏa mãn z − 1 − i + z − 3 + i = 2 2 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P = z − z i + z − z 2 . Tính tổng S = M + m
A. S = 4 + 2 5 .
B. S = 5 + 17 .
C. S = 1 + 10 + 17 .
D. S = 10 + 2 5 .
Cho số phức z thỏa mãn z + 2 − i + z − 5 + 6 i = 7 2 . Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = z − 1 + 2 i . Tổng M + m là:
A. 2
B. 3 2 .
C. 4 2 .
D. 7 2 .