Ôn thi vào 10

KT

Cho phương trình: \(x^2+2\left(m+1\right)x+m-4=0\) (m là tham số) (1)

a) Giải phương trình (1) khi \(m=-5\)

b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-3\)

NT
2 tháng 3 2022 lúc 21:02

a: Thay m=-5 vào (1), ta được:

\(x^2+2\left(-5+1\right)x-5-4=0\)

\(\Leftrightarrow x^2-8x-9=0\)

=>(x-9)(x+1)=0

=>x=9 hoặc x=-1

b: \(\text{Δ}=\left(2m+2\right)^2-4\left(m-4\right)=4m^2+8m+4-4m+16=4m^2+4m+20>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt 

\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-3\)

\(\Leftrightarrow x_1^2+x_2^2=-3x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)

\(\Leftrightarrow\left(2m+2\right)^2+m-4=0\)

\(\Leftrightarrow4m^2+9m=0\)

=>m(4m+9)=0

=>m=0 hoặc m=-9/4

Bình luận (0)

Các câu hỏi tương tự
KT
Xem chi tiết
TT
Xem chi tiết
AQ
Xem chi tiết
XL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
AQ
Xem chi tiết
TM
Xem chi tiết