\(\Delta=m^2-4m+4=\left(m-2\right)^2\)
Để PT có hai nghiệm đều dương thì:
\(\hept{\begin{cases}m\ne2\\x_1+x_2>0\\x_1.x_2>0\end{cases}}\)<=>\(\hept{\begin{cases}m\ne2\\m>1\end{cases}}\)
cac câu hoc đên nghiêm vi et rôi ah
\(\Delta=m^2-4m+4=\left(m-2\right)^2\)
Để PT có hai nghiệm đều dương thì:
\(\hept{\begin{cases}m\ne2\\x_1+x_2>0\\x_1.x_2>0\end{cases}}\)<=>\(\hept{\begin{cases}m\ne2\\m>1\end{cases}}\)
cac câu hoc đên nghiêm vi et rôi ah
Cho phương trình: x²-mx+m-5=0
Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt x1;x2 thỏa mãn: x1+2x2=1
Cho phương trình: x²+2mx-3=0
Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt x1;x2 thỏa mãn: x1²+x2²+3x1.x2=1
Cho phương trình x2-11x+m-2=0
Tìm các giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1;x2 thỏa mãn \(\sqrt{x_1^2-10x_1+m-1}\)=5-\(\sqrt{x_2+1}\)
Cho phương trình : x2-2(m-1)x-4m=0
Tìm các giá trị của m để phương trình đã cho có ít nhất một nghiệm không âm
Bài 1: Cho phương trình x² – 2(m+1)x + m² + m +1 = 0
Tìm các giá trị của m để phương trình có nghiệm
Trong trường hợp phương trình có nghiệm là x1, x2 hãy tính theo m
Cho phương trình x2 – mx + m – 1 = 0 (1) a) Giải phương trình (1) với m = -2 b) Chứng tỏ phương trình (1) luôn có nghiệm x1, x2 với mọi giá trị của m. c) Tìm giá trị của m để phương trình (1) có 1 nghiệm bằng 3 . Tìm nghiệm còn lại
cho phương trình x2- mx+m-1=0 (m là tham số)
a)C.M phương trình luôn có nghiệm với mọi giá trị của m
b)Cho m=3, gọi x1, x2 là hai nghiệm của phương trình. Tính giá trị của x12 +x22 .
Cho phương trình bậc hai x^2-mx+m-3=0 Chứng minh rằng phương trình luôn có nghiệm với mọi m Tìm các giá trị m để phương trình có hai nghiệm x1 x2 sao cho bt A=2(x1+x2)-x1×x2) đạt giá trị nhỏ nhất
cho phương trình : x2-mx-m-1=0 . Tìm tất cả giá trị của m để phương trình có hai nghiệm phân biệt x1 ,x2 thoả mã : x1 +x2 x1x2 =căn x1 - căn( 8-x2)