\(\Delta=m^2+16>0;\forall m\)
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)
\(A=\frac{2\left(x_1+x_2\right)+7}{\left(x_1+x_2\right)^2-2x_1x_2}=\frac{2m+7}{m^2+8}=\frac{16m+56}{8\left(m^2+8\right)}=\frac{-\left(m^2+8\right)+m^2+16m+64}{8\left(m^2+8\right)}\)
\(A=-\frac{1}{8}+\frac{\left(m+8\right)^2}{8\left(m^2+8\right)}\ge-\frac{1}{8}\)
\(A_{min}=-\frac{1}{8}\) khi \(m=-8\)