MF

Cho phương trình : x2 - (m + 4)x + 4m = 0

a/ Tìm m để phương trình có một nghiệm là 2 . Tìm nghiệm còn lại của phương trình .

b/ Tìm m để phương trình đã cho có 2 nghiệm phân biệt x1, x2 thỏa mãn : 

x12 + (m + 4)x2 = 16

LH
5 tháng 6 2021 lúc 14:57

\(x^2-\left(m+4\right)x+4m=0\) (1)

a)Thay x=2 vào pt (1) ta được: \(4-\left(m+4\right).2+4m=0\) \(\Leftrightarrow m=2\)

Thay m=2 vào pt (1) ta được: \(x^2-6x+8=0\)\(\Leftrightarrow x^2-4x-2x+8=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Vậy nghiệm còn lại là 4

b)Để pt có hai nghiệm pb \(\Leftrightarrow\Delta>0\Leftrightarrow m^2-8m+16>0\)\(\Leftrightarrow\left(m-4\right)^2>0\)\(\Leftrightarrow m\ne4\)

Do x1 là một nghiệm của pt \(\Rightarrow x_1^2-\left(m+4\right)x_1+4m=0\)

\(\Rightarrow x_1^2=\left(m+4\right)x_1-4m=0\)

Theo viet có: \(x_1+x_2=m+4\)

\(x_1^2+\left(m+4\right)x_2=16\)

\(\Leftrightarrow\left(m+4\right)x_1-4m+\left(m+4\right)x_2=16\)

\(\Leftrightarrow\left(m+4\right)\left(x_1+x_2\right)-4m-16=0\)

\(\Leftrightarrow\left(m+4\right)^2-4m-16=0\)

\(\Leftrightarrow m^2+4m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-4\end{matrix}\right.\)(Thỏa)

Vậy...

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
PD
Xem chi tiết
2N
Xem chi tiết
DT
Xem chi tiết
DT
Xem chi tiết
PB
Xem chi tiết
DH
Xem chi tiết