Bài 6: Hệ thức Vi-et và ứng dụng

H24

Cho phương trình: \(x^2-\left(2m+1\right)x+2m-4=0\)

a) Tìm m để \(\left|x_1\right|+\left|x_2\right|=5\)

b) Tìm m để pt có 2 nghiệm thỏa mãn \(x_1< 1< x_2\)

c) Tìm hệ thức liên hệ giữa \(x_1;x_2\) không phụ thuộc vào m

NL
5 tháng 5 2019 lúc 10:18

\(\Delta=\left(2m+1\right)^2-4\left(2m-4\right)=\left(2m-1\right)^2+16>0\)

Phương trình luôn có 2 nghiệm pb

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=2m-4\end{matrix}\right.\) (1)

a/ \(\left|x_1\right|+\left|x_2\right|=5\)

\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=25\)

\(\Leftrightarrow\left(2m+1\right)^2-2\left(2m-4\right)+2\left|2m-4\right|=25\)

- Với \(m\ge2\) ta có:

\(\left(2m+1\right)^2=25\Rightarrow\left[{}\begin{matrix}2m+1=5\\2m+1=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=-3< 2\left(l\right)\end{matrix}\right.\)

- Với \(m< 2\) ta có:

\(\left(2m+1\right)^2-4\left(2m-4\right)-25=0\)

\(\Leftrightarrow4m^2-4m-8=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2\left(l\right)\end{matrix}\right.\)

b/ \(x_1< 1< x_2\Leftrightarrow\left\{{}\begin{matrix}x_1-1< 0\\x_2-1>0\end{matrix}\right.\) \(\Rightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow2m-4-\left(2m+1\right)+1< 0\)

\(\Leftrightarrow-4< 0\) (luôn đúng)

Vậy với mọi m pt luôn có 2 nghiệm t/m \(x_1< 1< x_2\)

c/ Trừ vế cho vế của hệ (1) ta được:

\(x_1+x_2-x_1x_2=5\)

Đây chính là biểu thức liên hệ 2 nghiệm ko phụ thuộc m

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
CP
Xem chi tiết
KG
Xem chi tiết
H24
Xem chi tiết
PA
Xem chi tiết
HT
Xem chi tiết
NL
Xem chi tiết
KV
Xem chi tiết
H24
Xem chi tiết