\(\Delta=64-4\cdot15=4>0\)
\(\Rightarrow\) Pt có 2 nghiệm pb
Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=8\\x_1x_2=15\end{matrix}\right.\)
a) Ta có: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{8}{15}\)
b) Lại có: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{x_1^2+x_2^2}{x_1x_2}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\)
\(=\dfrac{8^2-2\cdot15}{15}=\dfrac{34}{15}\)