Violympic toán 9

VT

Cho phương trình \(x^2-2mx+2m^2-1=0\)(với m là tham số). Để phương trình có 2 nghiệm x1, x2 thỏa mãn \(\left(x_1\right)^3+\left(x_2\right)^3-\left(x_1\right)^2-\left(x_2\right)^2=-2\) thì m = ...

TH
26 tháng 4 2019 lúc 21:53

\(\Delta'=\left(-m\right)^2-2m^2+1\)

=\(m^2-2m^2+1\)

=\(-m^2+1\) \(\Rightarrow-m^2+1>0\Leftrightarrow m< 1\)

theo vi-et ta có \(x_1+x_2=-2m\)

\(x_1.x_2=2m^2-1\)

theo đề bài ta có \(\left(x_1\right)^3+\left(x_2\right)^3-\left(x_1\right)^2-\left(x_2\right)^2=-2\)

\(\Leftrightarrow\)\(\left(x_1+x_2\right).\left(x_1^2-x_1.x_2+x_2^2\right)\) = 4

\(\Leftrightarrow\left(x_1+x_2\right).[\left(x_1+x_2\right)^2-3x_1.x_2]\) =4

\(\Leftrightarrow-2m.[\left(-2m\right)^2-3.\left(2m^2-1\right)]\)=4

\(\Leftrightarrow-2m.\left(4m^2-6m^2+3\right)\)=4

\(\Leftrightarrow-2m.\left(-2m^2-3\right)\) =4

\(\Leftrightarrow4m^2+6m\) =4

\(\Leftrightarrow4m^2+6m-4=0\)

\(\Delta=6^2-4.4.\left(-4\right)=36+64=100>0\) =>\(\sqrt{\Delta}=\sqrt{100}=50\)

phương trình có 2 ngiệm \(x_1=\frac{11}{2}\),\(x_2=-7\)

với \(x_2=-7\) thỏa mãn đk

Bình luận (0)
TH
26 tháng 4 2019 lúc 21:54

bài này thì mk ko chắc đúng ko từ \(-2m.\left(-2m^2-3\right)\) trở lên là đúng

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
NL
Xem chi tiết
BB
Xem chi tiết
VT
Xem chi tiết
NH
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết