Sửa đề: Tim m để phương trình đã cho có hai nghiệm \(x_1;x_2\) thỏa mãn: \(x_1+3x_2=6\)
Giải
Ta có: \(\Delta=b^2-4ac=\left(-2m\right)^2-4.1.\left(2m-2\right)=4m^2-8m+8=4\left(m^2-2m+2\right)\)
\(=4\left[\left(m^2-2m+1\right)+1\right]=4\left[\left(m-1\right)^2+1\right]=4\left(m-1\right)^2+4>0\forall m\in R\)
Theo định lý Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2m\left(1\right)\\x_1x_2=\dfrac{c}{a}=2m-2\left(2\right)\end{matrix}\right.\)
Lại có: \(x_1+3x_2=6\) (3)
Từ (1) và (3) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1+3x_2=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_2=6-2m\\x_1+3x_2=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=3-m\\x_1+3.\left(3-m\right)=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=3-m\\x_1=3m-3\end{matrix}\right.\)
Thay \(x_1=3m-3;x_2=3-m\) vào (2) ta được:
\(\left(3m-3\right)\left(3-m\right)=2m-2\)
\(\Leftrightarrow-3m^2+12m-9-2m+2=0\)
\(\Leftrightarrow3m^2-10m+7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{7}{3}\end{matrix}\right.\)
Vậy \(m=1;m=\dfrac{7}{3}\) thì phương trình đã cho có hai nghiệm \(x_1;x_2\) thỏa mãn \(x_1+3x_2=6\)