Bài 5: Công thức nghiệm thu gọn

H24
Cho phương trình : X^2 - 2(m + 2)x + m^2 - 1= 0 a ) giải pt với m = -1 b) tìm m để pt có một nghiệm là 2
MN
24 tháng 1 2021 lúc 19:44

a) \(x^2-2\left(m+2\right)x+m^2-1=0\left(1\right)\)

Thay : m = -1 vào (1) :

\(\left(1\right)\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

b) Với : x = 2 , thay vào (1) : 

\(\left(1\right)\Leftrightarrow2^2-2\left(m+2\right)+m^2-1=0\)

\(\Leftrightarrow m^2-2m-1=0\)

\(\Leftrightarrow m^2-2x+1=2\)

\(\Leftrightarrow\left(m-1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}m-1=\sqrt{2}\\m-1=-\sqrt[]{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{2}+1\\m=-\sqrt{2}+1\end{matrix}\right.\)

Bình luận (2)
NT
24 tháng 1 2021 lúc 20:08

a) Thay m=-1 vào phương trình, ta được:

\(x^2-2\cdot\left(-1+2\right)x+\left(-1\right)^2-1=0\)

\(\Leftrightarrow x^2-2x+1-1=0\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy: Khi m=-1 thì phương trình có nghiệm là S={0;2}

b) Để phương trình có nghiệm là 2 thì

Thay x=2 vào phương trình, ta được:

\(2^2-2\cdot\left(m+2\right)\cdot2+m^2-1=0\)

\(\Leftrightarrow m^2-1+4-4\left(m+2\right)=0\)

\(\Leftrightarrow m^2+3-4m-8=0\)

\(\Leftrightarrow m^2-4m-5=0\)

\(\Leftrightarrow m^2-5m+m-5=0\)

\(\Leftrightarrow m\left(m-5\right)+\left(m-5\right)=0\)

\(\Leftrightarrow\left(m-5\right)\left(m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-5=0\\m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-1\end{matrix}\right.\)

Vậy:Để phương trình có nghiệm x=2 thì \(m\in\left\{5;-1\right\}\)

Bình luận (0)

Các câu hỏi tương tự
MT
Xem chi tiết
NN
Xem chi tiết
DT
Xem chi tiết
LN
Xem chi tiết
TV
Xem chi tiết
TV
Xem chi tiết
NK
Xem chi tiết
LM
Xem chi tiết
TM
Xem chi tiết