NL

Cho phương trình mx2-2(m-1)x+m-4=0

a, Giải phương trình khi m=1

b, Tìm m để phương trình có 2 nghiệm x1;x2 và x1+2x2=3

AH
8 tháng 5 2022 lúc 16:17

Lời giải:
a. Khi $m=1$ thì pt trở thành:
$x^2-3=0$

$\Leftrightarrow x^2=3\Leftrightarrow x=\pm \sqrt{3}$

b.

Để pt có 2 nghiệm $x_1,x_2$ thì:
\(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m-1)^2-m(m-4)=2m+1\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m\geq \frac{-1}{2}\end{matrix}\right.\)

Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:
$x_1+x_2=\frac{2(m-1)}{m}$
$x_1x_2=\frac{m-4}{m}$

Khi đó:
$x_1+2x_2=3$

$\Leftrightarrow x_2=3-(x_1+x_2)=3-\frac{2(m-1)}{m}=\frac{m+2}{m}$

$x_1=\frac{2(m-1)}{m}-x_2=\frac{m-4}{m}$

$\frac{m-4}{m}=x_1x_2=\frac{m-4}{m}.\frac{m+2}{m}$
$\Leftrightarrow \frac{m-4}{m}(\frac{m+2}{m}-1)=0$

$\Leftrightarrow \frac{m-4}{m}.\frac{2}{m}=0$

$\Leftrightarrow m=4$ (tm)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LH
Xem chi tiết
OL
Xem chi tiết
LK
Xem chi tiết
2N
Xem chi tiết
N9
Xem chi tiết
NB
Xem chi tiết
MF
Xem chi tiết
HQ
Xem chi tiết