m(mx+1)= 3(mx+1)
<=>m^2x+m=3mx+3
<=>m^2 - 3mx +m -3 = 0
co Δ = b^2 - 4ac
=\(\left(-3m\right)^2\) - 4 . ( m - 3) . (m^2)
= \(9m^2\) - \(12m^3\) + \(12m^2\)
= \(21m^2\) - \(12m^3\)
de pt vo nghiem thi Δ = 0
<=>\(21m^2\) - \(12m^3\) = 0
<=>\(7m^2\) - \(4m^3\) =0
<=>7m . ( m - \(\frac{4}{7}\) ) = 0
<=>\(\hept{\begin{cases}7m=0=>m=0\\m-\frac{4}{7}=0=>m=\frac{4}{7}\end{cases}}\)
vay voi m = { 0 , \(\frac{4}{7}\)} thi pt tren vo nghiem