Cho phương trình m . l n 2 ( x + 1 ) - ( x + 2 - m ) l n ( x + 1 ) - x - 2 = 0 (1). Tập hợp tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thoả mãn 0 < x 1 < 2 < 4 < x 2 là khoảng . Khi đó a thuộc khoảng
Cho hàm số y = ax 3 + bx 2 + cx + d với a ≠ 0 có hai hoành độ cực trị là x=1 và x=3. Tập hợp tất cả các giá trị của tham số m để phương trình f(x) = f(m) có đúng ba nghiệm phân biệt là:
A. .
B. .
C. .
D. .
Cho hàm số y = a x 3 + b x 2 + c x + d với a khác 0 có hai hoành độ cực trị là x=1 và x=3. Tập hợp tất cả các giá trị của tham số m để phương trình f(x) = f(m) có đúng ba nghiệm phân biệt là:
Cho phương trình 2 log 4 2 x 2 - x + 2 m - 4 m 2 + log 1 2 x 2 + m x - 2 m 2 = 0 . Biết rằng S = a ; b ∪ c ; d , a < b < c < d là tập hợp các giá trị của tham số m để phương trình đã cho có hai nghiệm phân biệt x1, x2 thỏa mãn x 1 2 + x 2 2 > 1 . Tính giá trị biểu thức A = a + b + 5c + 2d.
A. A = 1
B. A = 2
C. A = 0
D. A = 3
Cho phương trình m - 1 log 1 2 2 x - 2 2 + 4 m - 5 log 1 2 1 ( x - 2 ) + 4 m - 4 = 0 (với m là tham số). Gọi S = a ; b là tập hợp các giá trị của m để phương trình có nghiệm trên đoạn 5 2 ; 4 . Tính a + b .
A. 7 3 .
B. - 2 3 .
C. - 3 .
D. 1034 237 .
Cho phương trình (m + 1) 16x - 2( 2m - 3) .4x + 6m + 5 = 0 với m là tham số thực. Tập tất cả các giá trị của m để phương trình có hai nghiệm trái dấu có dạng (a; b). Tính P = a.b
A. 4
B. -4
C. 5
D. -5
Tập hợp tất cả các giá trị thực của tham số m để phương trình
8 x - m 2 2 x + 1 + ( 2 m 2 - 1 ) 2 x + m - m 3 có ba nghiệm thực phân biệt là khoảng (a;b). Tính S = ab
A. S = 2 3
B. S = 4 3
C. S = 3 2
D. S = 5 3 3
Cho hàm số y=f(x) có đồ thị như hình vẽ dưới đây. Gọi S là tập hợp tất cả các giá trị của tham số m để phương trình f ( 3 - 4 - x 2 ) = m có hai nghiệm phân biệt thuộc đoạn - 2 ; 3 . Tìm tập S.
A. S = ( - 1 ; f 3 - 2 ]
B. S = ( f 3 - 2 ; 3 ]
C. S = ○
D. S = [-1;3]
Cho hàm số y=f(x) có bảng biến thiên như sau
Tập hợp tất cả các giá trị của tham số m để phương trình f(x) + m =0 có 2 nghiệm phân biệt là