Violympic toán 9

TT

Cho phương trình \(ax^2+bx+1=0\), với a, b là các số hữu tỉ. Tìm a, b biết \(x=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)là nghiệm của phương trình.

AH
15 tháng 5 2018 lúc 1:20

Lời giải:

Rút gọn \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=4-\sqrt{15}\)

Gọi $x_0$ là một nghiệm nữa của pt đã cho (chưa cần biết phân biệt hay không).

Theo định lý Viete ta có: \(\left\{\begin{matrix} 4-\sqrt{15}+x_0=\frac{-b}{a}(1)\\ (4-\sqrt{15})x_0=\frac{1}{a}(2)\end{matrix}\right.\)

\((2)\Rightarrow x_0=\frac{1}{a(4-\sqrt{15})}=\frac{4+\sqrt{15}}{a}\)

Thay vào (1):

\(4-\sqrt{15}+x_0=4-\sqrt{15}+\frac{4+\sqrt{15}}{a}=\frac{-b}{a}\)

\(\Leftrightarrow a(4-\sqrt{15})+4+\sqrt{15}=-b\)

\(\Leftrightarrow (a-1)(4-\sqrt{15})=-b-8\)

Ta thấy vế phải là một số hữu tỉ nên vế trái cũng là số hữu tỉ

\((a-1)(4-\sqrt{15})\) là tích một số hữu tỉ nhân một số vô tỷ, để kết quả là một số hữu tỉ thì \(a-1=0\Rightarrow a=1\)

\(\Rightarrow b=-8\)

Vậy \((a,b)=(1,-8)\)

Bình luận (0)
H24
23 tháng 5 2018 lúc 2:01

x=(√5-√3)/(√5+√3)=(4-√15

a=0

x=1/b; b €Q=>1/b€Q=> 1/b≠4-√15=> a≠0

x=(-b±√∆)/(2a)=-b/(2a)±√∆/(2a)

x1=(4-√15)

a,b€Q=> -b/(2a)=4

√(b^2-4a)/(2a)=√15

16a^2-a=15a^2

a(a-1)=0

a≠0; a=1

a=1=> b =-8

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết
BB
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
HV
Xem chi tiết
TG
Xem chi tiết
BB
Xem chi tiết