Ta có với a ≠ 0; b ≠ 0 thì ax + by = c ⇔ by = −ax + c ⇔ y = − a b x + c b
Nghiệm của phương trình được biểu diễn bởi x ∈ R y = − a b x + c b
Đáp án: A
Ta có với a ≠ 0; b ≠ 0 thì ax + by = c ⇔ by = −ax + c ⇔ y = − a b x + c b
Nghiệm của phương trình được biểu diễn bởi x ∈ R y = − a b x + c b
Đáp án: A
Phương trình nào là phương trình bậc nhất hai ẩn x, y: a. ax+by=c(a,b,c∈R) b. ax+by=c(a,b,c∈R,c≠0) c. ax+by=c(a,b,c∈R,a≠0hoặcb≠0) d. A, B, C đều đúng.
Cho phương trình ax + by = c với a ≠ 0, b ≠ 0 . Nghiệm của phương trình được biểu diễn bởi
A. x ∈ R y = - a b x + c b
B. x ∈ R y = - a b x - c b
C. x ∈ R y = c b
D. x ∈ R y = - c b
Cho phương trình ax + by = c với a ≠ 0, b ≠ 0 . Nghiệm của phương trình được biểu diễn bởi
A. x ∈ R y = - a b x + c b
B. x ∈ R y = - a b x - c b
C. x ∈ R y = c b
D. x ∈ R y = - c b
Cho a,b,c là 3 số phân biệt sao cho các phương trình: x2+ax+1=0 và x2+bx+c=0 có nghiệm chung. Đồng thời các phương trình x2+x+a=0 và x2+cx+b=0 cũng có nghiệm chung.
Tính giá trị của biểu thức P=a+b+c
Câu 1.8: Biết x là một số tự nhiên có hai chữ số, biết nếu đem x chia cho tổng các chữ số của x thì được thương là 4, dư là 3. Còn nếu đem x chia cho tích các chữ số của x thì được thương là 3 và dư là 5. Khi đó x = ......
Câu 1.9: Biết rằng phương trình x2 + px + 1 = 0 có 2 nghiệm là a, b và phương trình x2 + qx + 2 = 0 có 2 nghiệm b, c. Khi đo giá trị của biểu thức A = pq - (b - a)(b - c) = ...........
Câu 1.10: Cho x; y > 0 thỏa mãn x + y ≤ 1. Giá trị nhỏ nhất của biểu thức là: .......
giúp e với!! mai e thi r!!! hụ hụ
Với mỗi phương trình sau, tìm nghiệm tổng quát của phương trình và vẽ đường thẳng biểu diễn tập nghiệm của nó:
a) 3x – y = 2; b) x + 5y = 3;
c) 4x – 3y = -1; d) x + 5y = 0 ;
e) 4x + 0y = -2 ; f) 0x + 2y = 5.
Cho a,b,c là các số dương đôi một khác nhau sao cho a+b+c = 12. CMR trong 3 phương trình sau có 1 phương trình có nghiệm, một phương trình vô nghiệm:
\(x^2+ax+b=0\); \(x^2+bx+c=0\); \(x^2+cx+a=0\)
Cho tích a.b.c.d≠ 0
Cho biết c và d là nghiệm của phương trình \({x^2+ax+b}=0\)
a và b là nghiệm của phương trình \({x^2+cx+d}=0\)
Tính tổng a+b+c+d
cho a,b,c là 3 số dương có tổng bằng 12
chứng minh rằng trong 3 phương trình :
x^2 + ax + b =0
x^2+bx+c = 0
x^2 + cx +a =0
có một phương trình vô nghiệm , một phương trình có nghiệm