ta có \(x^2_2=2mx_2-m^2+m-1\)
nên ta có \(2m\left(x_1+x_2\right)-m^2+m-1=10m-1\)
theo vi-et ta có :\(x_1+x_2=2m\Rightarrow3m^2-9m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=3\end{cases}}\)
thay nguowijc lại thấy m=3 thỏa mãn đề bài
ta có \(x^2_2=2mx_2-m^2+m-1\)
nên ta có \(2m\left(x_1+x_2\right)-m^2+m-1=10m-1\)
theo vi-et ta có :\(x_1+x_2=2m\Rightarrow3m^2-9m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=3\end{cases}}\)
thay nguowijc lại thấy m=3 thỏa mãn đề bài
Cho phương trình \(x^2-\left(m+1\right)x+2-8=0\) (1), m là tham số.
a) giải phương trình (1) khi m=2.
b) Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn
\(x^2_1+x_2^2+\left(x1-2\right)\left(x2-2\right)=11\)
Cho phương trình x2 - (m +1)x +2m -8 =0 (1), m là tham số.
a) Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn x12 + x22 + ( x1 - 2)(x2 -2) =11
Tìm tất cả các giá trị của tham số m để phương trình \(x^2-2\left(m-1\right)x+m^2-3=0\) có hai nghiệm x1, x2 thỏa mãn \(x^2_1+4x_1+2x_2-2mx_1=1\)
b Tìm m để phương trình \(\left(m-1\right)x^2+2\left(m-1\right)x+m+3=0\) có hai nghiệm x1,x2 thỏa mãn \(x_1^2+x_1.x_2+x_2^2=1\)
c Tìm m để phương trình \(\left(m-1\right)x^2-2mx+m+2=0\) có hai nghiệm x1,x2 phân biệt thỏa mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+6=0\)
d Tìm m để phương trình \(3x^2+4\left(m-1\right)x+m^2-4m+1=0\) có hai nghiệm phân biệt x1,x2 thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\) (x1+x2)
Cho phương trình: x²+2mx-3=0
Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt x1;x2 thỏa mãn: x1²+x2²+3x1.x2=1
giải chi tiết cho phương trình: x2 - 2(m-1)x+2m-3=0 tìm tất cả các giá trị của m để phương trình có 2 nghiệm x1,x2 thỏa mãn x1 +m=2x2+1
Cho phương trình x^2 -2mx+4m-4=0 (1) , m là tham số
a)Gia phương trình với m=1
b)Tìm giá trị của m để phương trình (1) có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện x1^2 +2mx2 -8m+5=0
Câu 1: Cho phương trình: : x2 – 2mx - 10 = 0
a) Giải phương trình khi m = 1
b) Tìm giá trị của tham số m để phương trình x2 – 2mx + 10 = 0 có hai nghiệm phân
biệt \(x1\), \(x2\) thỏa mãn \(x1^2\) + \(x2^2\) = 29
1: cho phương trình x^2-(m+2)x+m^2-1=0
a, gọi x1 và x2 là nghiệm của phương trình. tìm m thỏa mãn x1-x2=2
b, tìm giá trị nguyên nhỏ nhất của m để phương trình có hai nghiệm khác nhau