PB

Cho phương trình  8z2 - 4(a + 1)z + 4a + 1 = 0 (1) với a là tham số. Tính tổng tất cả các giá trị của a để (1) có hai nghiệm z1; zthỏa mãn  z1/ z2  là số ảo, trong đó z2 là số phức có phần ảo dương.

A. 1

B. 2

C. 3

D. 4

CT
2 tháng 11 2019 lúc 14:27

Chọn B.

Từ giả thiết suy ra z1; z2 không phải là số thực.

Do đó Δ’ < 0, hay  4( a + 1)2 - 8(4a + 1) < 0

Hay a2 - 6a -1 < 0    (*)

Suy ra 

Ta có z1/ z2 là số ảo khi và chỉ khi  là số ảo

Tương đương: (a + 1)2 - (-(a2 - 6a - 1)) = 0 hay a2 - 2a = 0

Vậy a = 0 hoặc a = 2.

Đối chiếu với điều kiện (*) ta có giá trị của a là a = 0 hoặc a = 2.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết