MN

Cho phương trình: 2x^2-3x+m-1=0. Tìm m để phương trình: a) có một nghiệm bằng 1, từ đó suy ra nghiệm còn lại. b) có 2 nghiệm x1, x2 thoả x1/x2 + x2/x1 = 2

AH
30 tháng 5 2021 lúc 23:55

Lời giải:

a) PT nhận $x=1$ là nghiệm, tức là:

$2.1^2-3.1+m-1=0$

$\Leftrightarrow -1+m-1=0$

$\Leftrightarrow m=2$

Nghiệm còn lại: $\frac{3}{2}-1=\frac{1}{2}$ theo định lý Viet

b) 

Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta=9-8(m-1)\geq 0\Leftrightarrow m\leq \frac{17}{8}$. 

Áp dụng định lý Viet:

\(\left\{\begin{matrix} x_1+x_2=\frac{3}{2}\\ x_1x_2=\frac{m-1}{2}\end{matrix}\right.\)

Khi đó:

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=2\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=2\)

\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=2\Leftrightarrow \frac{\frac{9}{4}}{\frac{m-1}{2}}=4\)

\(\Leftrightarrow m=\frac{17}{8}\) (thỏa mãn)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
TT
Xem chi tiết
OL
Xem chi tiết
PT
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
LC
Xem chi tiết
NA
Xem chi tiết
NB
Xem chi tiết