Cho phương trình: −𝑥 2 − (2𝑚 + 1)𝑥 + 𝑚2 + 1 = 0 (1)
a) Chứng minh (1) luôn có nghiệm với mọi 𝑚.
b) Giải phương trình khi 𝑚 = -1
Cho phương trình : x\(^2\) - 2mx + 2m - 7 = 0 (1) ( m là tham số )
a) Giải phương trình (1) khi m = 1
b) Tìm m để x = 3 là nghiệm của phương trình (1). Tính nghiệm còn lại.
c) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt x\(_1\), x\(_2\). Tìm m để
x\(_1\)\(^2\) + x\(_2\)\(^2\) = 13
d) Gọi x\(_1\),x\(_2\) là hai nghiệm của phương trình (1). Tìm giá trị nhỏ nhất của biểu thức
x\(_1\)\(^2\) + x\(_2\)\(^2\) + x\(_1\)x\(_2\).
Giải giúp mình với ạ
Cho PT : x2 - 2mx + 2m+1 =0
a) cho phương trình có nghiệm là -3 . tính nghiệm còn lại
b) chứng minh phương trình luôn có 2 nghiệm với mọi m
c) gọi x1 x2 là 2 nghiệm của phương trình tìm m để x1^2 + x2^2 + 2x1x2 = 16
Cho phương trình bậc hai: x2 – 2mx + 2m – 5 = 0 ( m: tham số ) (1)
a/ Chứng tỏ rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m.
b/ Gọi x1, x2 là nghiệm của phương trình (1). Tìm m để ( x1 – x2 )2 = 32
Cho phương trình x² + (m+1)x + m = 0
a) Giải phương trình với m = 2
b) Chứng minh phương trình luôn có nghiệm với mọi m
c) Tìm điều kiện m để phương trình có một nghiệm x=1 và tìm nghiệm còn lại
Cho phương trình x2 + 2mx – 1 = 0 ( m là tham số ) (2)
a/ Chứng minh phương trình(2) luôn có hai nghiệm phân biệt với mọi m
b/ Gọi x1, x2 là hai nghiệm của phương trình trên, tìm m để x12 + x22 – x1x2 = 7
Cho phương trình x2+ 2(m − 1)x − 6m − 7 = 0 (1) (m là tham số).
a) Chứng minh rằng với mọi giá trị của m thì phương trình (1) luôn có hai nghiệm phân biệt.
b) Gọi x1, x2là hai nghiệm của phương trình (1). Tìm các giá trị của m thỏa x1(x1+3/3x2)+x2(x2+3/2x1)=15
các bạn ai biết thì chỉ giúp mình với ạ
Cho pt x²-2(m+1)+6m-4=0 (1)(với m là tham số)
a, chứng minh rằng phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
b, Tìm m để pt (1) có 2 nghiệm x1;x2 thỏa mãn (2m−2)x1+x22−4x2=4
Cho phương trình: x2 - 2(m-1)x + m - 5 = 0
1) Chứng minh rằng với mọi m phương trình luôn có 2 nghiệm phân biệt
2) Tìm m để phương trình có 2 nghiệm mà hiệu của chúng bằng 3