H24

Cho P=(\(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)+\(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)).\(\dfrac{x-4}{10\sqrt{x}-2x}\)(với x>0,x khác 4,x khác 25)

a)Rút gọn P

b)Tính P khi x=\(\dfrac{1}{4}\)

c)tìm x để P<-1

NH
8 tháng 7 2023 lúc 21:27

\(a.P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{10\sqrt{x}-2x}\left(x>0,x\ne4,x\ne25\right)\)

\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-4}\right].\dfrac{x-4}{10\sqrt{x}-2x}\)

\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}.\dfrac{x-4}{10\sqrt{x}-2x}\)

\(=\dfrac{2x}{x-4}.\dfrac{x-4}{2\sqrt{x}\left(5-\sqrt{x}\right)}\)

\(=\dfrac{\sqrt{x}}{5-\sqrt{x}}\)

\(b.\) Thay \(x=\dfrac{1}{4}\) vào P, ta được:

\(\dfrac{\sqrt{\dfrac{1}{4}}}{5-\sqrt{\dfrac{1}{4}}}=\dfrac{0,5}{5-0,5}=\dfrac{1}{9}\)

Vậy ......................

\(c.P< -1\)

\(\Leftrightarrow\dfrac{\sqrt{x}}{5-\sqrt{x}}< -1\)

\(\Leftrightarrow\dfrac{\sqrt{x}+5-\sqrt{x}}{5-\sqrt{x}}< 0\)

\(\Leftrightarrow\dfrac{5}{5-\sqrt{x}}< 0\)

\(\Leftrightarrow5-\sqrt{x}< 0\)

\(\Leftrightarrow\sqrt{x}>5\)

\(\Leftrightarrow x>25\left(tm\right)\)

Vậy ...................

Bình luận (0)

Các câu hỏi tương tự
MB
Xem chi tiết
NB
Xem chi tiết
HV
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
NL
Xem chi tiết
LL
Xem chi tiết
BT
Xem chi tiết