TL

cho parabol(P) \(y=x^2\)

và đường thẳng(d) y=mx+m+3

a)với m=-1 hãy tìm tọa độ giao điểm của d với p

b)tìm các giá trị của m để d cắt p tại 2 điểm phân biệt có tung độ lần lượt là y1;y2 sao y1+y2=6

PM
22 tháng 3 2017 lúc 22:02

A) thay m = -1 vào (d) ta có y = -x + 2

Hoành độ giao điểm của (d) và (p) là no của pt

x2 = -x + 2

<=> x2 + x - 2 = 0

<=> (x -1)(x + 2) = 0

<=>\(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\) => \(\left[{}\begin{matrix}y=1\\y=4\end{matrix}\right.\)

Vậy giao điểm của (d) và (p) là: (1, 1); (-2, 4)

B) Giao điểm hoành độ của (d) và (p) là n0 của pt

x2 = mx + m + 3

<=> x2 - mx - (m + 3) = 0 (1)

Để (d) cắt (p) tại 2 điểm pb => (1) có 2 n0 pb <=> \(\Delta>0\)

<=> m2 + 4(m + 3) > 0

<=> m2 + 4m + 12 >0

<=> (m + 2)2 + 8 > 0 (LĐ)

Theo hệ thức Vi-ét ta có

x1 + x2 = \(\dfrac{-b}{a}\) = m

x1x2 = \(\dfrac{c}{a}\) = -(m + 3)

Theo đề bài ta có y1 + y2 = 6

<=> x12 + x22 = 6

<=> (x1 + x2)2 - 2x1x2 = 6

<=> m2 + 2m + 3 = 6

<=> m2 + 2m - 3 = 0

<=> (m - 1)(m + 3) = 0

<=>\(\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)

Vậy m = 1 hoặc m = -3 thì (d) cắt (p) tại 2 điểm pb TM đề bài

Bình luận (1)

Các câu hỏi tương tự
NP
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
XT
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết