NN

Cho parabol (P): y = x2 và đường thẳng (d): y = mx - 1 (m ≠ 0). Tìm m để đường thẳng (d) cắt (P) tại 2 điểm phân biệt thỏa mãn x2.(x1+ 1) = 3

H24
24 tháng 5 2022 lúc 15:47

Xét ptr hoành độ của `(P)` và `(d)` có:

        `x^2=mx-1`

`<=>x^2-mx+1=0`   `(1)`

Để `(d)` cắt `(P)` tại `2` điểm pb thì ptr `(1)` có `2` `n_o` pb

  `=>\Delta > 0`

`<=>(-m)^2-4 > 0`

`<=>m^2 > 4`

`<=>` $\left[\begin{matrix} m > 4\\ m < -4\end{matrix}\right.$

Với `m > 4` hoặc `m < -4`, áp dụng Vi-ét có:`{(x_1+x_2=[-b]/a=-m),(x_1.x_2=c/a=1):}`

Ta có:`x_2(x_1 ^2+1)=3`

`<=>x_2(x_1 ^2+x_1.x_2)=3`

`<=>x_1.x_2(x_1+x_2)=3`

`<=>1(-m)=3`

`<=>m=-3` (ko t/m)

Vậy không có gtr nào của `m` t/m yêu cầu đề bài

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
HN
Xem chi tiết
NH
Xem chi tiết
PB
Xem chi tiết
VM
Xem chi tiết
H24
Xem chi tiết
HQ
Xem chi tiết
PB
Xem chi tiết
HN
Xem chi tiết