DB

Cho p và p+4 là các số nguyên tố (p>3).CMR p+8 là hợp số 

TA
31 tháng 1 2017 lúc 21:01

Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 

Bình luận (0)
TT
31 tháng 1 2017 lúc 21:01

Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 
Câu 2: chắc có vấn đề ... đã nguyên tố còn chia hết cho 6 
Câu 3: 3 là số nguyên tố thỏa mãn yêu cầu bài toán, ta cần c/m với các số nguyên tố p> 3 không có số nào thỏa mãn yêu cầu: 
số p có dạng 3k+1 hoặc 3k+2 (nếu có dạng 3k sẽ chia hết cho 3) 
Nếu p có dạng 3k + 1 thì p+2 chia hết cho 3 nên không thỏa mãn 
Nếu p có dạng 3k+2 thì p+10 chia hết cho 3 nên không thỏa mãn 

Bình luận (0)
NM
31 tháng 1 2017 lúc 21:16

 Đem p chia cho 3 sẽ xảy ra 3 khả năng về số dư , số dư chỉ có thể là 0,1,2 . Mà p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 . Nhưng p+4 là số nguyên tố nên p không thể có dạng 3k+2 \(=>\)p có dạng 3k+1\(=>p+8=3k+9\).Mà 3k+9 \(⋮\)3 nên p+8 \(⋮\)3 (3 là số nguyên tố) . Vậy p+8 là hợp số nếu  p và p+4 là số nguyên tố (p>3)

Bình luận (0)
VP
31 tháng 1 2017 lúc 21:37

ta có:p là số ng tố,p.3 suy ra p ko chia hết cho 3

suy ra p=3k+1hoặc p=3k+3(k thuộc N*)

xét các th:

+p=3k+1

suy ra p+8=(3k+1)+8=3k+1+8=3k+9=3x(k+3) chia hết cho 3

mà p+8>3 suy ra p+8 là hợp số

+p=3k+2

suy ra p+4=(3k+2)+4=3k+2+4=3k+6=3x(k+2) chia hết cho 3

mà p+4>3 suy ra p+4 là hợp số( vô lí vì p+4 là số ng tố)

do đó p=3k+1

nên p+8 là hợp số(đpcm)

      

Bình luận (0)