LQ

Cho p và 8p-1 là các số nguyên tố.Chứng minh rằng 8p+1 là hợp số

HB
2 tháng 1 2017 lúc 21:12

Don gian

Bình luận (0)
DP
2 tháng 1 2017 lúc 21:18

Xét p dưới dạng : 3k (khi đó p =3) ,3k +1,3k +2 (k thuộc N). Dạng thứ ba không thỏa mãn đề bài (vì khi đó 8p -1 là hợp số), hai dạng trên đều cho 8p + 1 là hợp số

tk nha bạn

Bình luận (0)
H24
24 tháng 8 2017 lúc 15:13

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HD
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
HE
Xem chi tiết
NM
Xem chi tiết
BN
Xem chi tiết
DD
Xem chi tiết