H24

cho p q là 2 số nguyên tố lớn hơn 5. Chứng minh p^4+2019q^4 chia hết cho 20

Chứng minh chia hết cho 5 không cần chia trường hợp có được không? Giúp mk vs

AH
9 tháng 8 2021 lúc 21:12

Lời giải:

$A=p^4+2019q^4=p^4-q^4+2020q^4$

$=(p^2-q^2)(p^2+q^2)+2020q^4$
Vì $p,q$ là số nguyên tố lớn hơn 5 nên $(p,5)=(q,5)=1$

$\Rightarrow p^2,q^2\equiv 1,4\pmod 5$

Nếu $p^2\equiv q^2\pmod 5$ thì $p^2-q^2\equiv 0\pmod 5$

$\Rightarrow A=(p^2-q^2)+2020q^4\equiv 0 \pmod 5(1)$

Nếu $p^2,q^2$ không cùng số dư khi chia cho $5$ thì:

$p^2+q^2\equiv 1+4\equiv 0\pmod 5$

$\Rightarrow A\equiv 0\pmod 5(2)$

Từ $(1);(2)\Rightarrow A\vdots 5(*)$

Mặt khác:

Vì $p,q>5$ nên $p,q$ lẻ

$\Rightarrow p^2\equiv q^2\equiv 1\pmod 4$

$\Rightarrow p^2-q^2\equiv 0\pmod 4$

$\Rightarrow A=(p^2-q^2)(p^2+q^2)+2020q^4\equiv 0\pmod 4$

$\Rightarrow A\vdots 4(**)$

Từ $(*); (**)\Rightarrow A\vdots (4.5=20)$

 

Bình luận (4)
HT
22 tháng 3 2022 lúc 20:58

Akai Haruma!(mod 5) và (mod 4) là j vậy 

Bình luận (1)
 Khách vãng lai đã xóa