Xét 3 số tự nhiên liên tiếp: p; p + 1; p + 2; trong 3 số này có 1 số chia hết cho 3
Do p; p + 2 nguyên tố > 3 => p; p + 2 không chia hết cho 3
=> p + 1 chia hết cho 3 (1)
Do p nguyên tố > 3 => p lẻ => p + 1 chẵn => p + 1 chia hết cho 2 (2)
Từ (1) và (2), do (2;3)=1 => p + 1 chia hết cho 6 (đpcm)
p là số nguyên tố lớn hơn 3
=>p không chia hết cho 3
=>p=3k+1;3k+2
xét p=3k+1=>p+2=3k+3=3(k+1) chia hết cho 3
=>p+2 là hợp số(Vô lí)
=>p=3k+2
=>p+1=3k+3=3(k+1)
p là số nguyên tố lớn hơn 3
=>p là số lẻ
=>p+1 là số chẵn
=>p+1 chia hết cho 2
Vì (3;2)=1=>p+1 chia hết cho 6
=>đpcm