Chương I - Căn bậc hai. Căn bậc ba

NC

Cho P = (\(\dfrac{1}{1- \sqrt{a}}-\dfrac{1}{1+ \sqrt{a}}\))(\(\dfrac{1}{ \sqrt{a}}\) + 1) với a > 0; a khác 1

a, Rút gọn P

b, Tìm a để P2 = P

NT
3 tháng 2 2021 lúc 21:36

a) Ta có: \(P=\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\right)\cdot\left(\dfrac{1}{\sqrt{a}}+1\right)\)

\(=\left(\dfrac{1+\sqrt{a}-\left(1-\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)\cdot\left(\dfrac{1}{\sqrt{a}}+\dfrac{\sqrt{a}}{\sqrt{a}}\right)\)

\(=\dfrac{1+\sqrt{a}-1+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\dfrac{1+\sqrt{a}}{\sqrt{a}}\)

\(=\dfrac{2\sqrt{a}}{\sqrt{a}\left(1-\sqrt{a}\right)}\)

\(=\dfrac{2}{1-\sqrt{a}}\)

b) Để \(P^2=P\) nên \(P^2-P=0\)

\(\Leftrightarrow P\left(P-1\right)=0\)

\(\Leftrightarrow P-1=0\)(Vì \(P\ne0\forall a\) thỏa mãn ĐKXĐ)

\(\Leftrightarrow P=1\)

\(\Leftrightarrow\dfrac{2}{1-\sqrt{a}}=1\)

\(\Leftrightarrow1-\sqrt{a}=2\)

\(\Leftrightarrow\sqrt{a}=-1\)(Vô lý)

Vậy: Không có giá trị nào của P để \(P^2=P\)

Bình luận (0)

Các câu hỏi tương tự
AQ
Xem chi tiết
AQ
Xem chi tiết
NC
Xem chi tiết
NC
Xem chi tiết
NN
Xem chi tiết
TT
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết