Chương I - Căn bậc hai. Căn bậc ba

AQ

Cho biểu thức :

\(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)

với x > 0 , x ≠ 1

a. Rút gọn A

b. Tìm x để A = 1/3

HP
12 tháng 8 2021 lúc 12:07

a) \(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)

\(A=\left[\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right].\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(A=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

b) \(\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{1}{3}\)

\(\Leftrightarrow3\sqrt{x}-3=\sqrt{x}\)

\(\Leftrightarrow3\sqrt{x}-\sqrt{x}=3\)

\(\Leftrightarrow2\sqrt{x}=3\)

\(\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\)

\(\Rightarrow x=\dfrac{9}{4}\)

Bình luận (0)

Các câu hỏi tương tự
AQ
Xem chi tiết
LL
Xem chi tiết
QE
Xem chi tiết
AQ
Xem chi tiết
AQ
Xem chi tiết
NN
Xem chi tiết
QE
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết