a) \(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
\(A=\left[\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right].\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(A=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b) \(\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{1}{3}\)
\(\Leftrightarrow3\sqrt{x}-3=\sqrt{x}\)
\(\Leftrightarrow3\sqrt{x}-\sqrt{x}=3\)
\(\Leftrightarrow2\sqrt{x}=3\)
\(\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\)
\(\Rightarrow x=\dfrac{9}{4}\)