Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho (O;R) đường kính AB, vẽ tiếp tuyến Ax và By . Trên (O) lấy điểm M, qua M vẽ tiếp tuyến (O) cắt Ax, By tại C và D
a) Chứng minh tứ giác AOMC nội tiếp và COD = 90
b) Tia BM cắt Ax tại N. Chứng minh C là trung điểm AN
c) Chứng minh AB là tiếp tuyến đường tròn đường kính CD
d) Vẽ MH vuông AB , gọi I là trung điểm MH. Chứng minh 3 điểm A, I, C thẳng hàng. Giúp mình c d với
cho (O;R), AB là đường kính. vẽ hai tiếp tuyến Ax và By, trên OA lấy điểm C sao cho AC= R 3 . Từ M(với M≠A,B) thuộc ( O;R),vẽ đường thẳng vuông góc với MC cắt Ax tại D và cắt By tại E chứng minh: a) Tứ giác CMEB nội tiếp b) △DCE vuông và MA.CE=DC.MB c) giả sử ˆ A M B = 30 o tính độ dài cung MA và diện tích △MAC theo R
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Cho đường tròn (O) đường kính AB. Vẽ các tiếp tuyến Ax và By (Ax, By cùng thuộc nửa mặt phẳng bờ AB). Qua điểm M trên (O) (M khác A và B) vẽ đường thẳng vuông góc với OM cắt Ax, By lần lượt tại E và F.
a) Cm EF là tiếp tuyến (O)
b) Cm EF = AE + BF.
c) Xác định vị trí điểm M để EF có độ dài nhỏ nhất.
cho (O;R), AB là đường kính. vẽ hai tiếp tuyến Ax và By, trên OA lấy điểm C sao cho AC= R/3 .Gọi M là điểm trên cung AB ( M khác A,B). Tiếp tuyến tại M cắt Ax tại D và cắt By tại E chứng minh: a) Tứ giác AOMD và OBEM nội tiếp b) △DOE vuông và MA.OE=MB.DO c) giả sử ˆ A M B = 30 o tính độ dài cung MA và diện tích △MAC theo R
BÀI 1 Cho đường tròn ( O) đường kính AB , vẽ bán kính OC vuông góc với AB. Từ B vẽ tiếp tuyến Bx. Gọi M là trung điểm OC , AM kéo dài cắt đường tròn tại E và Bx tại I .Tiếp tuyến từ E cắt Bx tại D. Chứng minh tứ giác MODE nội tiếp
BÀI 2: Cho đường tròn (O) đường kính AB, từ A và B vẽ Ax vuông góc với AB và By vuông góc BA ( Ax và By cùng phía so với bờ AB) .Vẽ tiếp tuyến x'My' ( tiếp điểm M ) cắt Ax tại C và By tại D; OC cắt AM tại I và OD cắt BM tại K .Chứng minh tứ giác CIKD nội tiếp
BÀI 1 Cho đường tròn ( O) đường kính AB , vẽ bán kính OC vuông góc với AB. Từ B vẽ tiếp tuyến Bx. Gọi M là trung điểm OC , AM kéo dài cắt đường tròn tại E và Bx tại I .Tiếp tuyến từ E cắt Bx tại D. Chứng minh tứ giác MODE nội tiếp
BÀI2: Cho đường tròn (O) đường kính AB, từ A và B vẽ Ax vuông góc với AB và By vuông góc BA ( Ax và By cùng phía so với bờ AB) .Vẽ tiếp tuyến x'My' ( tiếp điểm M ) cắt Ax tại C và By tại D; OC cắt AM tại I và OD cắt BM tại K .Chứng minh tứ giác CIKD nội tiếp
BÀI 3; Cho hình vuông ABCD, AB=10 cm. Gọi các điểm I, K lần lượt là trung điểm của AB và BC. Gọi M là giao điểm của DI và AK
a) Tính DI
b)Chứng minh rằng tứ giác IMKB nội tiếp
1/ Từ một điểm M ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm)
a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn này
b/ Cho MO = 2R CMR tam giác MAB đều
2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn
3/ Cho nửa đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By lần lượt tại E và F. CMR tứ giác AEMO là tứ giác nội tiếp
4/ Cho tam giác ABC cân tại A có góc A nhọn, đường vuông góc với AB tại A cắt đường thẳng B, C tại E. Kẻ EN vuông với EC gọi M là trung điểm BC. CMR tứ giác AMNE là tứ giác nội tiếp đường tròn
Giải giúp mk vs mk đang cần gấp
Cho nửa đường tròn tâm O đường kính AB trên nửa mặt phẳng AB chứa o vẽ hai tiếp tuyến Ax By lấy C trên ab khác Abo Qua M thuộc nửa đường tròn O vẽ vẽ đường thẳng vuông góc với BC đường thẳng này cắt Ax By lần lượt ở E và F gọi P là giao điểm của AB và AC Q là giao điểm của MB và và FC
Chứng minh tứ giác ACME nội tiếp được
Tam giác cef là tam giác vuông
PQ song song với AB