1) Cho 2 đường tròn (O;R) và ( O';R') tiếp xúc ngoài tại A. Hai điểm B và C lần lượt di động trên (O) và ( O') sao cho góc BAC = 90 độ
a) Cm trung điểm I của BC luôn thuộc đường tròn cố định
b) Hạ AH vuông góc với BC tại H. Cmr AH bé hơn hoặ bằng 2RR'/R+R'
Cho (O;R) , dây BC cố định . trên tia CB lấy A, kẻ tiếp tuyến AM, AN với (O) ( N thuộc cung BC nhỏ ) . H là trung điểm của dây BC. Tia MH cắt (O) tại điểm thứ hai D. Giả sử B, c cố định, (O) di động. CMR : ND song song với AC và MN luôn đi qua 1 điểm cố định.
Cho đoạn thẳng OA= R, vẽ đường tròn(O,R). Trên đường tròn (O,R) lấy H bất kì sao cho AH<R. Qua H vẽ đường thẳng A tiếp xúc với đường tròn (O,R). Trên đường thẳng a lấy B và C sao cho H nằm giữa B và C, và AB=AC=R. Vẽ HM vương góc với OB ( M thuộc OB) và HN vuông góc với với OC ( N thuộc OC)
a) Chứng minh OM.OB=ON.OC và MN luôn đi qua một điểm cố định
b)Chứng minh: OB.OC=2R
c)Tìm giá trị lớn nhất của diện tích am giác OMN khi H thay đổi
Cho đoạn thẳng OA= R, vẽ đường tròn(O,R). Trên đường tròn (O,R) lấy H bất kì sao cho AH<R. Qua H vẽ đường thẳng A tiếp xúc với đường tròn (O,R). Trên đường thẳng a lấy B và C sao cho H nằm giữa B và C, và AB=AC=R. Vẽ HM vương góc với OB ( M thuộc OB) và HN vuông góc với với OC ( N thuộc OC)
a) Chứng minh OM.OB=ON.OC và MN luôn đi qua một điểm cố định
b)Chứng minh: OB.OC=2R
c)Tìm giá trị lớn nhất của diện tích am giác OMN khi H thay đổi
Cho tam giác ABC nội tiếp (O;R) và ngoại tiếp (I;r). Qua 2 điểm O và I dựng đường tròn (P) sao cho (P) tiếp xúc với AI. Gọi giao điểm giữa đường trung trực của BC với (P) và K khác O. Điểm M bất kì di động trên đường tròn ngoại tiếp tam giác BIC.
a) CMR: Tiếp tuyến tại M của đường tròn (MKO) luôn đi qua 1 điểm cố định S khi M di động ?
b) Gọi H là điểm đối xứng với I qua BC. Tia HS cắt đường tròn (SIO) tại điểm Q. CMR: Q thuộc đường tròn (O) ?
c) CMR: IO vuông góc với AQ ?
d) CMR: \(AB.BC+BC.CA+CA.AB\le\frac{4\left(4R+r\right)\left(8R-r\right)}{15}\) ?
Cho (o,R) tiếp xúc ngoài với (O',R') tại A, hai cát tuyến MAM' và NAN' quay quanh A và vuông góc với nhau (M,N thuộc (O), N',M' thuộc (O')
a, MM'2+NN'2 không đổi
b, NM' đi qua điểm K cố định. K là trung điểm MN' chuyển động trên 1 đường cố định
c, kẻ AH vuông góc MN'. tìm vị trí của đường thẳng MN' để đoạn thẳng AH lớn nhất
Bài 1: Cho (O;R) và một điểm M. Hãy chỉ dùng thước thẳng dựng đường thẳng đi qua M và vuông góc với đường kính AB cho trước (đường kính AB không đi qua M).
Bài 2: Cho (O;R) và (O’;R’) cùng trực giao với đường tròn (C;r). Chứng minh trục đẳng phương của hai đường tròn (O;R) và (O’;R’) đi qua điểm C.
Bài 3: Cho A không thuộc (O;R). O’ di động trên (O;R), đường thằng a là trục đẳng phương của hai đường tròn (O;R) và (O’;O’A). Chứng minh khoảng cách từ A đến đường thẳng a là không đổi.
Bài 4: Cho góc xOy = 45 độ. A là một điểm thuộc miền trong của góc đó. Bằng thước và compa hãy dựng đường thẳng đi qua A cắt Ox, Oy lần lượt tại M, N sao cho A là trung điểm của MN.
Bài 5: Cho góc xAy, hai điểm B, C lần lượt thay đổi trên các tia Ax, Ay sao cho AB+AC=d không đổi. Từ A kẻ đường thẳng song song với BC, cắt đường tròn ngoại tiếp tam giác ABC tại M. Tìm quỹ tích điểm M.
Bài 6: Cho nửa (T) đường kính AB, hai nửa đường thẳng Ax, By nằm cùng một phía và tiếp xúc với (T). Lấy hai điểm di động M thuộc Ax, N thuộc By sao cho ABMN có diện tích S không đổi. Tìm quỹ tích hình chiếu trung điểm I của AB trên MN.
Bài 7: Cho ∆ABC, các điểm M, N lần lượt thuộc AB, AC sao cho MN // BC. Xác định trục đẳng phương của 2 đường tròn đường kính BN và CM.
Cho (O;R) và dây cung AB=\(2\sqrt{3}\).Điểm P khác Avaf B. Gọi (C;R1) là đường tròn đi quá P tiếp xúc với đường tròn (O;R) tại A. Gọi (D;R2) là đường tròn đi qua P tiếp xúc với (O;R) tại B. Các đường tròn (C;R1) và (D;R2) cắt nhau tại M khác P. CMr; khi P di động trên Ab thì đường thẳng PM luôn đi qua 1 điểm cố định
Cho (O) đường kính AB và một điểm C di động trên (O). Vẽ (I) tiếp xúc (O) tại C và tiếp xúc đường kính AB tại D, đường tròn này cắt CA và CB lần lượt tại điểm thứ hai M và N CMR:
a) M,I,N thẳng hàng
b) ID vuông góc MN
c) Đường thẳng CD luôn đi qua một điểm cố định. Và từ đó suy ra cách dựng (I) nói trên.
Cho (O;R) và 1 điểm A nằm ngoài đương tròn, từ 1 điểm M di động trên đường thẳng d vuông góc với OA tại A. Vẽ các tiếp tuyến MB, MC với (O;R)(B, C là các tiếp điểm). Dây BC cắt OM và OA lần lượt ở H và K.
a, CM OA.OK ko đổi, từ đó suy ra BC luôn đi qua 1 điểm cố định
b, CM H di động trên 1 đường tròn cố định
c, Biết OA=2R. Hãy XĐ vị trí điểm M để SMBOC nhỏ nhất. Tính giá trị nhỏ nhất đó