Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1/ Cho đ/tròn (O,R),dây BC cố định,A tùy ý trên cung lớn BC.BM,CN là 2 đ/cao của tam giác ABC. Khi A chuyển động trên cung lớn BC thì tâm I của đ/tròn ngoại tiếp tam giác AMN chạy trên đường nào?
2/ Cho đ/tròn (O,R),dây BC cố định,A di động trên cung lớn BC. Khi A di động trên cung lớn BC thì trực tâm H cảu tam giác ABC chạy trên đường nào?
Cho đường tròn (O;R) và dây BC cố định. A là điểm chuyển động trên cung lớn BC sao cho tam giác ABC nhọn. Gọi H là trực tâm của tam giác ABC, M là điểm đối xứng của H qua A. Chứng minh rằng khi A thay đổi thì điểm M chạy trên một đường cố định.
cho tam giác ABC nhọn nội tiếp (O) có BC cố định, A thay đổi trên cung lớn BC sao cho tam giác ABC nhọn. Trực tâm H di chuyển trên 1cung tròn cố định. Hãy chỉ ra tâm và bán kính của cung tròn đó.
Cho đuờng tròn (O,R) có dây BC cố định, điểm A di chuyển trên cung lớn BC. Gọi AD, BE, CF là các đuờng cao và H là trực tâm của tam giác ABC, I là trung điểm của BC.
1) Chứng minh 4 điểm A,F,H,E cùng nằm trên một đuờng tròn và 4 điểm B,C,E,F cũng nằm trên một đuờng tròn
2) Khi cung nhỏ BC có số đo bằng 90*, tính độ dài dây cung BC và diện tích tam giác OBC
3) Đuờng thẳng qua E và vuông góc với EI cắt BC tại P.Chứng minh: PE^2=PB.PC
Cho đường tròn (O; R), BC là dây cung cố định. A là điểm chuyển động trên cung lớn BC sao cho tam giác ABC nhọn . H là trực tâm của tam giác ABC. Xác định A sao cho Diện tích tam giác HBC max
Giúp mình với ạ
Cho (o) và dây BC cố định không đi qua tâm. Lấy điểm A bất kỳ thuộc cung lớn BC. Gọi H là giao điểm của các đường cao BD và CE của tam giác? ABC. a, cm tg BCDE nt b kẻ tia Ax song song với ED (tia Ax nằm khác phía với điểm C bờ AB). Cm tia Ax là tiếp tuyến của đg tròn tâm O c, gọi I là giao điểm của O qua BC. Cm tỉ số AH/ OI luôn không đổi khi A di chuyển trên cung lớn BC
Cho BC là dây cung cố định của đường tròn tâm O bán kính R (BC<2R). A là một điểm di chuyển trên cung BC. M là một điểm di chuyển trên day AC sao cho AC = 3AM. Vẽ MNvuông góc với AB 9 N thuộc AB). Xác định vị trí của A để độ dài CN lớn nhất.
Cho đường tròn tâm O bán kính R và 1 dây cung BC cố định. A là điểm di động trên cung lớn BC. Gọi I là trung điểm AC.
a/ Chứng minh: I di động trên 1 đường tròn cố định
b/ Qua I vẽ đường thẳnd vuông góc với AB. Chứng minh: d luôn đi qua 1 điểm cố định
c/ Xác định vị trí A để diện tích tam giác ABC lớn nhất
d/ Trong tâm G tam giác ABC di động trên 1 đường cố định
cho đường tròn (O;R) có BC là dây cố định (BC<2R) ; E là điểm chính giữa cung nhỏ BC. gọi A là điểm di động trên cung lớn BC và AB<AC (A khác B). trên đoạn AC lấy điểm D khác C sao cho ED=EC. tia BD cắt đường tròn (O;R) tại điểm thứ hai là F.
a) chứng minh D là trực tâm của tam giác AEF.
b) gọi H là trực tâm tam giác DEC ; DH cắt BC tại N. đường tròn ngoại tiếp tam giác BDN cắt đường tròn (O;R) tại điểm thứ hai là M. chứng minh đường thẳng DM luôn đi qua một điểm cố định.