a/ Tức giác PKHN nội tiếp vì:
Góc K= góc H=90 độ
=> Cùng chắn đoạn thẳng BN ( tính chất tứ giác nội tiếp )
b/
a/ Tức giác PKHN nội tiếp vì:
Góc K= góc H=90 độ
=> Cùng chắn đoạn thẳng BN ( tính chất tứ giác nội tiếp )
b/
Cho đường tròn (O) và dây BC cố định không qua tâm, điểm A chuyển động trên cung lớn BC sao cho tam giác ABC nhọn. Đường cao BE và CF của tam giác ABC cắt nhau tại H và cắt (O) lần lượt tại M và N.
a) CM tứ giác BCEF nội tiếp và MN // FE.
b) Vẽ đường cao AD của tam giác ABC. CM H là tâm đường tròn nội tiếp tam giác DEF.
c) Đường thẳng qua A và vuông góc với EF luôn đi qua 1 điểm cố định.
Cho tam giác ABC nhọn nội tiếp trong đường tròn (O;R) . Vẽ đường kính AD và đường cao AH của tam giác ABC .
1/ CMR : AB.AC=AH.AD
2/đường thẳng AH cắt đường tròn (O) tại E . Gọi K là điểm đối xứng của E qua BC . CMR K là trực tâm của tam giác ABC .
3/ hai đường thẳng CK và AB cắt nhau tại M . Hai đường thẳng BK và AC cắt nhau tại N . CMR : AD vuông góc với MN .
4/ cho góc BAC = 45 độ CMR : 5 điểm B,M ,N O,C cùng thuộc một đường tròn tâm I . Tính diện tích hình phẳng giới hạn bởi dây MN và cung MN của đường tròn (I) theo R .
Chỉ giúp mình câu 4/ nha !
Cho đường tròn (O;R) và dây MN cố định. Gọi A là điểm chính giữa của cung lớn MN, đường kính AB cắt MN tại E. Lấy điểm C thuộc MN sao cho C khác M, N, E và BC cắt đường tròn (O;R) ở K. Chứng minh rằng:
a) Tứ giác KAEC nội tiếp
b) \(BM^2\) = BC.BK
1. Cho (O,R) dây AB cố định. Từ C di động trên (O) dựng hình bình hành CABD. CMR giao điểm hai đường chéo nằm trên 1 đường trong cố định
2. Cho BC cố định, I là trung điểm BC, A di động trên mặt phẳng sao cho BA=BC, H là trung điểm của AC, AI cắt BH tại M. Hỏi M di động trên di động trên đường nào thì A di động
3. Cho (O,R) BC là dây cố định. A là 1 điểm di động trên (O,R). Lấy M đối xứng với C qua trung điểm I của AB. Hỏi M di động trên đường nào khi A di động
4. Cho A di chuyển trên (O,R) đường kính BC gọi M đối xứng với A qua B, H là hình chiếu của A trên BC, I là trung điểm HC
a. CMR M chuyển động trên (O,R) 1 đường thẳng tròn cố định
b. CMR tam giác AHM đồng dạng tam giác CIA
c. CMR MH vuông góc AI
d MH cắt (O) tại E và F đường thẳng AI cắt (O) tại G. CMR Tổng bình phương các cạnh của tứ giác AEGF ko đổi
cho đường tròn (o) và dây BC cố định không qua tâm, điểm A chuyển động trên cung lớn BC sao cho tam giác ABC nhọn. Đường cao BE và CF của tam giác ABC cắt nhau tại H và cắt (o) lần lược tại M và M.
a)chứng minh tứ giác BCEF nội tiếp và MN song song với FE
b)vẽ đường cao AD của tam giác ABC. chứng minh H là tâm đường tròn nội tiếp tam giác DEF
c)chứng minh đường thẳng đi qua điểm A và vuôn góc với EF luôn đi qua một điển cố định
o đường tròn o có dây Cd cố định, gọi M là điểm nằm chính giữa cung nhỏ CD đường kính MN của (O) cắt dây CD tại I, lấy điểm E bất kì trên cung lớn CD9 E khác C,D,N);ME cắt CD tại K.các đường thẳng NE và CD cắt nhau tại p:1 chứng minh tứ giác IKEN nội tiếp:2 chứng minh EI*MN=NK*ME:3 NK cắt MP tại Q chứng minh IK là phân giác của góc EIQ
Cho (O) có đg kính AB ⊥MN tại H (H nằm giữa B và O). trên tia MN lấy C nằm ngoài O sao cho AC cắt (O) tại K (K khác A), 2 dây MN và BK cắt nhau tại E.
a) tg AHEK nội tiếp
b) CH.CE= CM.CN
c) qua điểm N, kẻ đg thẳng (d) ⊥ AC. cắt MK tại F. C/m: △CNF cân
giúp mk vs mk cần gấp lắm
Cho tam giác ABC nhọn nội tiếp (O;R), đường tròn (I,BC) cắt AB,AC tại F,E. BE cắt CF tại H, cắt (O) tại M,N. OI cắt (O) tại J, AH cắt BC tại D, cắt (O) tại K.
a/ CM : H và K đối xứng nhau qua BC
b/ OA vuông góc với MN
c/ Gọi S, Q là giao điểm của AD với đường tròn (I). S nằm giữa A, D. CM : AE.AC=AD2-DS2
d/ CM : AJ là phân giác chung của góc BAC và HAO của tam giác ABC.
e/ Gọi G là trọng tâm của tam giác ABC. CM : H,G, O thẳng hàng.
Cho đường tròn tâm O , Đường kính AB cố định . Điểm H thuộc đoạn thẳng OA (H khác O,A và H không là trung điểm của OA ) .Kẻ MN vuông góc với AB tại H . Gọi K là điểm bất kì thuộc cung lớn MN (K khác M,N và B ). Các đoạn thẳng AK và MN cắt nhau tại E
1, Cm 4 điểm H, E,K,B nội tiếp được trong 1 đường tròn
2, Cm tam giác AME đồng dạng với tam giác AKM
) Cho đường tròn tâm O bán kính OA và dây cung MN vuông góc OA (A nằm trên cung nhỏ MN). Vẽ dây cung AB và dây cung AC sao cho AB cắt MN tại I, AC cắt MN tại K theo thứ tự M, I, K, N. 1/ Chứng minh: Tứ giác BIKC nội tiếp. 2/ Gọi R là giao của AB và MC, S là giao của AC và BN. Chứng minh: MN // RS và AB.IR = AC.KS. 3/ Chứng minh: MA là tiếp tuyến của đường tròn ngoại tiếp MBI và đường tròn ngoại tiếp MBI tiếp xúc với đường tròn ngoại tiếp MCK.