Cho đường tròn tâm (O) , đường kính BC, lấy một điểm A nằm trên (O) sao cho AB>AC (A khác C). từ A vẽ AH vuông góc với BC (H thuộc BC). Từ H vẽ HE vuông góc với AB và HF vuông góc với AC (E thuộc AB, F thuộc AC)
1) Chứng minh rằng AEHF là hình chữ nhật và OA vuông góc với EF.
2) Tia FE cắt đường tròn (O) tại P. Chứng minh rằng tam giác APH cân.
cho đg tròn (O) có tâm O đừong kính BC. Lấy 1 điểm A trên đường tròn O sao cho AB > AC. từ A vẽ AH vuông góc với BC ( H THUỘC BC). Từ H vẽ HE vuông góc với AB và HF vuông góc với AC. ( E THUỘC AB, F THUỘC AC)
a) chứng minh tứ giác AEHF là hình chũ nhật
b) chứng minh OA vuông góc EF
c) đường thẳng EF cắt đường tròn O tại P, Q ( E nằm giữa P và F). Chứng minh rằng tam giác APH cân.
Cho đường tròn (O) có tâm O, đường kính BC. Lấy một điểm A trên đường tròn (O) sao cho AB > AC. Từ A, vẽ AH vuông góc với BC (H thuộc BC). Từ H, vẽ HE vuông góc với AB và HF vuông góc với AC (E thuộc AB, F thuộc AC).
a) Chứng minh OA vuông góc với EF.
Câu 4: Cho đường tròn tâm O, đường kính BC. Lấy một điểm A trên (O) sao ch AB > AC (A khác C) . Từ A vẽ AH vuông góc với BC (H thuộc BC) . Tư H vẽ HE vuông góc với AB và HFvuông góc với AC ( E thuộc AB, F thuộc AC).
1) Chứng minh rằng AEHF là hình chữ nhật và OA vuông góc với EF.
2) Tia FE cắt đường tròn (O) tại P, Chứng minh rằng tam giác APH cân
. Lấy điểm A trên (o) sao cho AB>AC . Từ A, vẽ AH vuông góc với BC(H thuộc BC) , từ H , vẽ HI vuông góc với AB và HK vuông góc với AC(I thuộc AB, K thuộc AC). câu a: chứng minh tứ giác AKHI là hình chũ nhật và OA vuông góc với IK
câu b: đường thẳng IK cắt đường tròn (o) M và N (N thuộc cung nhỏ EC). Chứng minh AM^2=AI.AB suy ra AMH là tam giác cân
câu C: gọi D là giao điểm MN và BC; E là giao điểm AD và (o) (E khác A). kẻ EK cắt BC tại I. CHứng minh FH^2=FC.FD
Cho đường tròn (O), đường kính BC. Lấy 1 điểm A trên đường tròn (O) sao cho AB>AC. Từ A kẻ AH vuông góc vs BC( H thuộc BC). Từ H vẽ HE vuông góc với AB và HF vuông góc với AC (E thuộc AB và F thuộc AC).
a, chứng minh rằng AEHF là hình chữ nhật và OA vuông góc với EF
b, Đường thẳng EF cắt đường tròn tại P và Q (E nằm giữa P và F)
Chứng minh AP^2=AE*AB. suy ra APH là tam giác cân
c, Gọi D là giao điểm của PQ và BC, K là giao điểm của AD và đường tròn (O) ( K khác A). Chứng minh rằng AEFK là tứ giác nội tiếp
d, Gọi I là giao điểm của KF và BC. Chứng minh IH^2=IC*ID
Cho đường tròn (O) có tâm O, đường kính BC. Lấy một điểm A trên đường tròn (O) sao cho AB > AC. Từ A, vẽ AH vuông góc với BC (H thuộc BC). Từ H, vẽ HE vuông góc với AB và HF vuông góc với AC (E thuộc AB, F thuộc AC).
a) Chứng minh rằng AEHF là hình chữ nhật và OA vuông góc với EF.
b) Đường thẳng EF cắt đường tròn (O) tại P và Q (E nằm giữa P và F).
Chứng minh AP2 = AE.AB. Suy ra APH là tam giác cân
c) Gọi D là giao điểm của PQ và BC; K là giao điểm cùa AD và đường tròn (O) (K khác A). Chứng minh AEFK là một tứ giác nội tiếp.
d) Gọi I là giao điểm của KF và BC. Chứng minh IH2 = IC.ID
Cho đường tròn (O) có tâm O, đường kính BC. Lấy một điểm A trên đường tròn (O) sao cho AB > AC. Từ A, vẽ AH vuông góc với BC (H thuộc BC). Từ H, vẽ HE vuông góc với AB và HF vuông góc với AC (E thuộc AB, F thuộc AC).
a) Chứng minh rằng AEHF là hình chữ nhật và OA vuông góc với EF.
b) Đường thẳng EF cắt đường tròn (O) tại P và Q (E nằm giữa P và F).
Chứng minh AP2 = AE.AB. Suy ra APH là tam giác cân
c) Gọi D là giao điểm của PQ và BC; K là giao điểm cùa AD và đường tròn (O) (K khác A). Chứng minh AEFK là một tứ giác nội tiếp.
d) Gọi I là giao điểm của KF và BC. Chứng minh IH2 = IC.ID
hepl me câu c, d
do đọc giải ko hiểu nên ms hỏi
ai giải chi tiết câu c,d dùm
Cho (o) đường kính BC ,lấy A thuốc (o) . Kẻ AH vuông góc với BC tại H , HÊ vuống góc với AB tại E , HF vuống góc với AV tại F . Gọi i là trung điểm của HC
a, Chứng minh tứ giác AEHF là hình chữ nhật
b, AE .AB = AF .AC
c, tính số đo góc BAC
d, C/m EF là tiếp tuyến của đường tròn ngoại tiếp tam giác HFC