Các trung điểm của các cạnh của một tứ diện đều cạnh a là các đỉnh của khối đa diện đều. Tính thể tích V của khối đa diện đều đó.
Tính diện tích xung quanh (S) của một khối đa diện lồi có 12 đỉnh là 12 trung điểm các cạnh của một hình lập phương cạnh a.
A. S = 4 a 2
B. S = ( 2 + 2 ) a 2
C. S = 2 ( 1 + 6 ) a 2
D. S = ( 3 + 3 ) a 2
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V . Tính V .
A. 7 2 a 3 216
B. 11 2 a 3 216
C. 13 2 a 3 216
D. 2 a 3 18
Cho khối tứ diện ABCD có thể tích bằng V, thể tích của khối đa diện có đỉnh là trung điểm các cạnh của tứ diện ABCD bằng V'. Tính tỉ số V'/V.
A. V ' V = 1 2
B. V ' V = 1 8
C. V ' V = 1 4
D. V ' V = 3 4
Cho khối tứ diện có thể tích V. Gọi V' là thể tích của khối đa diện có các đỉnh là trung điểm của các cạnh tứ diện đã cho. Tỉnh tỉ số V ' V
A. V ' V = 1 4
B. V ' V = 5 8
C. V ' V = 3 8
D. V ' V = 1 2
Cho khối hộp ABCD.A'B'C'D' có thể tích bằng 2018. Gọi M là trung điểm của cạnh AB. Mặt phẳng (MB'D') chia khối chóp ABCD.A'B'C'D' thành hai khối đa diện. Tính thể tích phần khối đa diện chứa đỉnh A
A. 5045 6
B. 7063 6
C. 10090 17
D. 7063 12
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trọng tâm của các tam giác ABD, ABC và E là điểm đối xứng với điểm B qua điểm D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V. Tính V
Cho khối hộp ABCD.A'B'C'D', điểm M nằm trên cạnh CC’ thỏa mãn CC’ = 3CM. Mặt phẳng (AB’M) chia khối hộp thành hai khối đa diện. Gọi V1 là thể tích khối đa diện chứa đỉnh A’,V2 là thể tích khối đa diện chứa đỉnh B. Tính tỉ số thể tích V1 và V2.
A. 1 27
B. 27 7
C. 7 20
D. 9 4
Cho khối hộp ABCD.A’B’C’D’. Gọi E và F theo thứ tự là trung điểm của các cạnh BB’ và DD’. Mặt phẳng (CEF) chia khối hộp trên làm hai khối đa diện. Tính tỉ số thể tích của hai khối đa diện đó.