cho đường tròn (O;R) dây BC cố định .điểm A di động trên cung lớn BC (AB < AC) sao cho tam giác ABC nhọn . các đường cao BE,CF cắt nhau tại H. gọi K là giao điểm của EF và BC .
a) chứng minh tứ giác BCEF nội tiếp .
b) chứng minh KB.KC=KE.KF
Cho tam giác nhọn nội tiếp đường tròn , dây cố định, điểm di động trên cung lớn . Gọi là các đường cao và là trực tâm của tam giác là trung điểm của và là trung điểm của .
a) Chứng minh 4 điềm cùng thuộc một đường tròn.
b) Chứng minh và .
c) Tìm điều kiện của tam giác để tam giác có diện tích lớn nhất.
Cho đường tròn (O) và dây BC cố định không qua tâm, điểm A chuyển động trên cung lớn BC sao cho tam giác ABC nhọn. Đường cao BE và CF của tam giác ABC cắt nhau tại H và cắt (O) lần lượt tại M và N.
a) CM tứ giác BCEF nội tiếp và MN // FE.
b) Vẽ đường cao AD của tam giác ABC. CM H là tâm đường tròn nội tiếp tam giác DEF.
c) Đường thẳng qua A và vuông góc với EF luôn đi qua 1 điểm cố định.
Tam giác ABC có 3 góc nhọn nội tiếp (O;R), các đường cao AD; BE; CF cắt nhau tại H. Kẻ đường kính AA', I là trung điểm của BC.
1, Cm BCEF nội tiếp.
2, H, I, A' thẳng hàng.
3, DH* DA= DB* DC.
4, Cho BC cố định, A chuyển động trên cung BC lớn sao cho tam giác ABC nhọn. Tìm vị trí của A để diện tích tam giác eah max
Cho(O,R) và 1 dây BC cố định sao cho BC<2R. Lấy điểm A trên cung lớn BC sao cho tam giác ABC nhọn. Các đường cao BE và CF của tam giác ABC cắt nhau tại H. AD là đường kính của (O).
a) Kẻ OM vuông góc BC. Chứng minh: H,M,D thẳng hàng.
b) Chứng minh: bán kính đường tròn ngoại tiếp tam giác AEF không đổi khi A thay đổi
Cho tam giác ABC (AB < AC) có 3 góc nhọn nội tiếp trong đường tròn tâm O bán kính R. Gọi H là giao điểm của 3 đường cao AD,BE,CF của tam giác ABC
a) Chứng minh rằng AEHF và AEDB là các tứ giác nội tiếp đường tròn
b) Vẽ đường cao AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau .Suy ra AB.AC=2R.AD
cho (O,r), dây BC cố định, BC=R căn 3,A là điểm di động trên cung lớn BC(A khác BC) sao cho tam giác ABC nhọn. các đường cao BD,CE của tam giác ABC cắt nhau tại H. kẻ đường kínH AF của đường tròn tâm O ,AF cắt BC tại N.
b. chứng minh AE.AB=AD.AC
c.chứng minh tứ giác BHCF là hình bình hành
d.đường tròn ngoại tiếp tam giác ADE cắt (O) tại điểm thứ 2 là K ( K khác O). chứng minh K,H,F thẳng hàng
Cho (O;R) có dây BC cố định. Trên cung lớn BC lấy A sao cho tam giác ABC nhọn. Gọi H là giao điểm các đường cao BE và CF. Đường thẳng EF cắt BC tại K
a) C/m: AEHF nội tiếp
b) C/m: KB.KC=KF.KE
c) Đường thẳng AK cắt (O) tại M. C/m: MH vuông góc AK
d) C/m: Điểm M cố định khi A di chuyển trên cung lớn BC
cho đường tròn (o) và dây BC cố định không qua tâm, điểm A chuyển động trên cung lớn BC sao cho tam giác ABC nhọn. Đường cao BE và CF của tam giác ABC cắt nhau tại H và cắt (o) lần lược tại M và M.
a)chứng minh tứ giác BCEF nội tiếp và MN song song với FE
b)vẽ đường cao AD của tam giác ABC. chứng minh H là tâm đường tròn nội tiếp tam giác DEF
c)chứng minh đường thẳng đi qua điểm A và vuôn góc với EF luôn đi qua một điển cố định