Cho đường tròn tâm O, cát tuyến ABC. Tiếp tuyến tại B và C cắt nhau tại K. Kẻ đường thẳng d vuông góc với OA, cắt OA tại H. Gọi E, F là giao điểm của d với (O), biết E nằm giữa K và F.
a) Chứng minh EMOF là tứ giác nội tiếp (đã làm được)
b) Chứng minh AE, AF là tiếp tuyến của đường tròn (O) ( cần hỏi)
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn này. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a. Chứng minh OA vuông góc với BC tại H.
b. Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn(O) tại E (E khác D). Chứng minh: AE.AD = AC^2
c. Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh rằng FD là tiếp tuyến của đường tròn (O).
cho đường tròn (o), đường kính AB gọi H là trung điểm của OA, qua H kẻ đường thẳng vuông góc với AB cắt đường tròn (o) tại hai điểm(o) C và D. qua D kẻ tiếp tiếp tuyến với đường tròn (o) cắt tia OA tại M. chứng minh MC là tiếp tuyến của đường tròn (o)
Cho đường tròn (O) và đường thẳng d không giao với (O). Kẻ OH vuông góc với d tại H. Trên d lấy một điểm A và kẻ tiếp tuyến AB với (O) ( B là tiếp điểm) sao cho A và B nằm cùng nửa mặt phẳng bờ là đường thẳng OH. Gọi E là giao điểm của BH với (O). Chứng minh:
a/Tứ giác OBAH nội tiếp. Xác định tâm của đường tròn ngoại tiếp tứ giác trên.
b/ góc BOE = 2 góc AOH
c/Đặt OA = a. Tiếp tuyến của (O) tại E cắt d tại C. Tính OC theo a.
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm tiếp điểm). Gọi H là giao điểm của OA và BC.
1) Chứng minh OA vuông góc với BC tại H
2) Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn (O) tại E (khác D). Chứng minh: AE.AD = AH.AO
3) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh FD là tiếp tuyến của đường tròn (O)
4) Gọi I là trung điểm cạnh AB, qua I vẽ đường thẳng vuông góc với cạnh AO tại M và đường thẳng này cắt đường thẳng DF tại N. Chứng minh: ND = NA
Cho điểm A nằm ngoài đường tròn (O; R), vẽ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của (O), gọi H là giao điểm của OA và BC.
a) Chứng minh rằng OA vuông góc với BC tại H.
b) Gọi E là giao điểm của AD và (O) ( E khác D). Chứng minh rằng AE.AD = AH.AO
c) Qua O vẽ đường thẳng vuông góc với AD tại K và cắt đường thẳng BC tại F. Chứng minh rằng FD là tiếp tuyến của (O).
d) Gọi I là trung điểm của AB, qua I vẽ đường thẳng vuông góc với OA tại M và đường thẳng này cắt DF tại N. Chứng minh rằng
NA = ND.
Mọi người giải giúp mình câu d) với nha! thanks mọi người nha!
Cho đường tròn tâm O và cột điểm A nằm ngoài đường tròn tâm O . Từ A vẽ hai tiếp tuyến AB, AC của đường tròn tâm O (B và C là hai tiếp điểm) . Gọi H là giao điểm của OA và BC.
a)Chứng minh OA vuông góc với BC tại H
b) Từ B vẽ đường kính BD cua (O), đường thẳng AD cắt (O) tại E ( khác D)
Chứng minh: AE.AD=AH.AO
c) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tai F. Chứng minh FD là tiếp tuyến của đường tròn tâm O.
Cho đường tròn (O), từ điểm A ngoài (O) vẽ hai tiếp tuyến AB, AC (B, C là hai tiếp điểm). Gọi H là giao điểm OA và BC. Vẽ đường kính BD của (O). Đường thẳng qua C vuông góc với AB cắt OA tại M, I là trung điểm OC. Đường thẳng vuông góc với BD tại D cắt BC tại E. Chứng minh OE vuông góc AD
1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.
a) Chứng minh AEHF nội tiếp
b) Chứng minh EC là tia phân giác của góc DEF
c) Đường thẳng EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD
d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)
e) Đường thẳng qua D song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.
2. Cho điểm A nằm ngoài đường tròn (O;R), từ A kẻ hai tiếp tuyến AB, AC và cát tuyến ADE (B, C là hai tiếp điểm, O nằm trong góc BAE). BC cắt OA tại I
a) Chứng minh: tứ giác ABOC nội tiếp và OA vuông góc với BC
b) Chứng minh OI.IA=(BC^2)/4 và AB.AC = AD.AE
c) Vẽ đường kính BK của (O), Tia KD cắt OA tại F. Chứng minh FB vuông góc với EB
d) Gọi H là trung điểm của DE, từ B kẻ dây BN song song với DE. Chứng minh 3 điểm N, H, C thẳng hàng.
3. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE.
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ.
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng
Giúp em giai cau 1 d, cau 2 c, câu 3 c , cảm ơn nhiều
Cho (O) và một điểm A nằm ngoài đường tròn (O). Từ A vã hai tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Gọi H là giao điểm của OA và BC
a, C/m OA vuông góc với BC tại H
b, Từ B vẽ đường kính BD của (O), đường thẳng AD cắt (O) tại E (khác D). C/m AE.AD=AH.AO
c, Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường thẳng BC tại F. C/m FD là tiếp tuyến của đường tròn (O)
d, Gọi I là trung điểm của cạnh AB, qua I vẽ đường thẳng vuông góc với cạnh OA tại M và đường thẳng này cắt đường thẳng DF tại N. C/m ND=NA
Câu d thôi nhé!