XD

Cho (O) đường kính AB = 2R, xy là tiếp tuyến với (O) tại B, CD là một đường bất kỳ ( AC
< CB). Gọi giao điểm của AC, AD với xy theo thứ tự là M, N.
1) Chứng minh tứ giác MCDN nội tiếp.
2) Chứng minh AC. AM = AD. AN.
3) Gọi I là tâm đường tròn ngoại tiếp tứ giác MCDN và H là trung điểm của MN. Chứng
minh rằng tứ giác AOIH là hình bình hành. Khi đường kính CD quay quanh điểm O thì
điểm I di động trên đường nào?
4) Khi góc AHB bằng 60
0. Tính diện tích xung quanh của hình tạo thành khi hình bình hành
AHIO quay quanh cạnh AH theo R.

 

NC
29 tháng 3 2021 lúc 22:04

Giải chi tiết:

1) Chứng minh tứ giác MCDN nội tiếp.

Xét (O;R)(O;R) ta có: AB,CDAB,CD là hai đường kính của hình tròn

⇒ADBC⇒ADBC là hình bình hành (hai đường chéo cắt nhau tại trung điểm của mỗi đường).

⇒{AC=BDAD=BC⇒{AC=BDAD=BC  (các cạnh đối).

Ta có: ∠ADB=900∠ADB=900 (góc nội tiếp chắn nữa đường tròn)

⇒∠BDN=900(1)⇒∠BDN=900(1)

Ta có: ∠CMN∠CMN là góc có đỉnh nằm ngoài đường tròn chắn các cung

BCBC và AB.AB.

⇒∠CMN=12(sdcungAB−sdcungCB)=12sdcungBD=12sdcungAC.(doAC=BD)⇒∠CMN=12(sdcungAB−sdcungCB)=12sdcungBD=12sdcungAC.(doAC=BD)

Lại có: ∠ADC∠ADC là góc nội tiếp chắn cung AC⇒∠ADC=12sdcungACAC⇒∠ADC=12sdcungAC

⇒∠ADC=∠CMN(=12sdcungAC).⇒∠ADC=∠CMN(=12sdcungAC).

⇒CDNM⇒CDNM là tứ giác nội tiếp (góc ngoài tại 1 đỉnh bằng góc trong tại đỉnh đối diện). (đpcm)

2) Chứng minh AC.AM=AN.AN.AC.AM=AN.AN.

 Xét   ΔACDΔACD và ΔANMΔANM ta có:

∠CADchung∠AMB=∠ADC(cmt)⇒ΔACD∼ΔANM(g−g)⇒ACAN=ADAM⇒AC.AM=AN.AD(dpcm).∠CADchung∠AMB=∠ADC(cmt)⇒ΔACD∼ΔANM(g−g)⇒ACAN=ADAM⇒AC.AM=AN.AD(dpcm).

3) Gọi I là tâm đường tròn nội tiếp tứ giác MCDN và H là trung điểm MN. Chứng minh tứ giác AOIH là hình bình hành. Khi đường kính CD quay quanh điểm O thì I di động trên đường nào?

Ta có I  là tâm đường tròn nội tiếp tứ giác MCDN, H là trung điểm của MN

 ⇒IH⊥MN⇒IH⊥MN  (mối quan hệ giữa đường kính và dây cung).

Mà AO⊥MNAO⊥MN (do AB là đường kính của đường tròn (O), MN là tiếp tuyến tại B của đường tròn)

⇒HI//AO(⊥MN)(1)⇒HI//AO(⊥MN)(1)

Mặt khác ta có ∠CAD=900∠CAD=900 (góc nội tiếp chắn nửa đường tròn)

⇒∠ACD+∠CDA=900⇒∠ACD+∠CDA=900 (tổng hai góc nhọn trong tam giác vuông)

Xét ΔMANΔMAN có ∠MAN=900∠MAN=900, H là trung điểm của MN

⇒AH=12MN=MH⇒AH=12MN=MH (đường trung tuyến ứng với cạnh huyền của tam giác vuông)

⇒ΔAHM⇒ΔAHM cân tại H (dhnb)

⇒∠MAH=∠HMA⇒∠MAH=∠HMA  (hai góc kề đáy của tam giác cân).

Lại có : ∠ACD=∠CAB∠ACD=∠CAB (hai góc nội tiếp chắn hai cung AD, CB bằng nhau).

Mà : ∠AMH+∠CAB=900∠AMH+∠CAB=900 (tam giác ABM vuông tại B)

⇒∠MAH+∠ACD=900⇒ΔCAK⇒∠MAH+∠ACD=900⇒ΔCAK  vuông tại K⇒CD⊥AH={K}.K⇒CD⊥AH={K}.

Lại có : OI⊥CDOI⊥CD (mối quan hệ giữa đường kính và dây cung)

⇒AH//OI(⊥CD).(2)⇒AH//OI(⊥CD).(2)

Từ (1) và (2) ta có :  {AH//OIAO//HI⇒AOIH{AH//OIAO//HI⇒AOIH là hình bình hành (dhnb). (đpcm)

Ta có : HH  là trung điểm của MN,M,NMN,M,N thuộc đườn thẳng xyxy cố định ⇒H⇒H là điểm di động trên đường xy.xy.

Vì AOIHAOIH là hình bình hành (cmt) ⇒AO=IH⇒AO=IH  (hai cạnh đối)

Mà AO=RAO=R không đổi ⇒IH=R⇒IH=R không đổi.

⇒I⇒I là điểm di động trên đườgn thẳng song song với đường thẳng xy.xy.

4) Khi góc AHB bằng 600; Tính diện tích xung quanh của hình trụ tạo thành khi hình bình hành AHOI quay quanh cạnh AH theo R.

Ta có : ∠AHB=600⇒∠OAH=300∠AHB=600⇒∠OAH=300

Khi quay hình bình hành AHIO một vòng quanh cạnh AH thì cạnh AO và cạnh HI  tạo nên hai hình nón bằng nhau có đường sinh AO=IH=R.AO=IH=R.

Cạnh OI  tạo nên hình trụ có bán kính đáy bằng bán kính đáy của hình nón cũng như bán kính của hình tròn (O)(O) là R.R.

Gọi P, Q  là tâm các đường tròn đáy của hình trụ.

Xét ΔAOPΔAOP ta có : ∠OPA=900,∠OAP=300.∠OPA=900,∠OAP=300.

⇒sin300=OPOA=OPR⇒OP=Rsin300=R2.⇒sin⁡300=OPOA=OPR⇒OP=Rsin⁡300=R2.

Xét ΔABHΔABH ta có : AH=ABtan600=2R√3=2R√33.AH=ABtan⁡600=2R3=2R33.

Diện tích xung quanh hình trụ cần tính là : Sxq=2πrh=2π.OP.AH=2π.R2.2R√33=2πR2√33.

Bình luận (0)
 Khách vãng lai đã xóa
TL
29 tháng 3 2021 lúc 22:12

DÀI V SAO GHI HẾT ?

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NV
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
TG
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
VL
Xem chi tiết
NH
Xem chi tiết