Ôn thi vào 10

H24

Cho (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M,N là tiếp điểm ) . Gọi H là giao điểm của AO và MN.
a, C/m OA vuông góc MN tại H
b, vẽ đường kính MC. C/m NC // AO
c, Gọi D là giao điểm thứ hai của AC với (O), c/m AD.AC=AH.AO
d, Gọi I là trung điểm của CD, MN cắt OI kéo dài tại S. C/m SC là tiếp tuyến của (O)

Giups mình ý d với ạ

NT
6 tháng 1 2022 lúc 20:46

a: Xét (O) có

AM là tiếp tuyến

AN là tiếp tuyến

Do đó: AM=AN

hay A nằm trên đường trung trực của MN(1)

Ta có: OM=ON

nên O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra AO là đường trung trực của MN

hay AO⊥MN(3)

b: Xét (O) có 

ΔMNC nội tiếp

MC là đường kính

Do đó: ΔMNC vuông tại N

=>MN⊥NC(4)

Từ (3) và (4) suy ra OA//CN

c: Xét (O) có 

ΔMDC nội tiếp

MC là đường kính

Do đó:ΔMDC vuông tại D

Xét ΔMAC vuông tại M có MD là đường cao

nên \(AD\cdot AC=AM^2\left(5\right)\)

Xét ΔMOA vuông tại M có MH là đường cao

nên \(AH\cdot AO=AM^2\left(6\right)\)

Từ (5) và (6)suy ra \(AD\cdot AC=AH\cdot AO\)

Bình luận (1)

Các câu hỏi tương tự
LP
Xem chi tiết
HN
Xem chi tiết
MN
Xem chi tiết
TL
Xem chi tiết
KT
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết
TH
Xem chi tiết
NL
Xem chi tiết