Ôn thi vào 10

NT

Từ một điểm A nằm ngoài đường tròn tâm O, bán kính R (AO < 2R) vẽ hai tiếp tuyến AD, AE với (O) (D,E là các tiếp điểm).Gọi H là giao điểm của DE và AO.Lấy điểm M thuộc cung nhỏ DE (M khác D khác E, MD < ME).Tia AM cắt đường tròn (O;R) tại N.Đoạn thẳng AO cắt cung nhỏ DE tại K.
a) Chứng minh AO vuông góc với DE và AD2 = AM.AN
b) Chứng minh NK là tia phân giác của góc DNI và tứ giác MHON nội tiếp.
c) Kẻ đường kính KQ của đường tròn (O;R).Tia QN cắt tia ED tại C.Chứng minh MD.CE = ME.CD


Các câu hỏi tương tự
LP
Xem chi tiết
TH
Xem chi tiết
NN
Xem chi tiết
BL
Xem chi tiết
NM
Xem chi tiết
HN
Xem chi tiết
KT
Xem chi tiết
HN
Xem chi tiết
AQ
Xem chi tiết