Chương II - Đường tròn

AP

Cho (O) bán kính OA = 6 cm, H là trung điểm của OA, đường thẳng vuông góc với OA tại H cắt (O) tại B và C, tiếp tuyến của (O) tại B cắt OA tại M
a Tính MB 
b OBAC là hình gì? vì sao? 
c) Chứng minh MC là tiếp tuyến của (O)

NT
22 tháng 12 2023 lúc 17:29

a: Xét ΔBAO có

BH là đường cao

BH là đường trung tuyến

Do đó: ΔBAO cân tại B

Xét ΔBAO cân tại B có OA=OB(=R)

nên ΔBAO đều

=>\(\widehat{BOA}=60^0\)

Xét ΔBMO vuông tại B có \(tanBOM=\dfrac{BM}{BO}\)

=>\(\dfrac{BM}{6}=tan60=\sqrt{3}\)

=>\(BM=6\sqrt{3}\left(cm\right)\)

b: Ta có: ΔOBC cân tại O

mà OH là đường cao

nên H là trung điểm của BC và OH là phân giác của góc BOC

Xét tứ giác OBAC có

H là trung điểm chung của AO và BC

=>OBAC là hình bình hành

Hình bình hành OBAC có OB=OC

nên OBAC là hình thoi

c: Xét ΔOBM và ΔOCM có

OB=OC

\(\widehat{BOM}=\widehat{COM}\)

OM chung

Do đó: ΔOBM=ΔOCM

=>\(\widehat{OBM}=\widehat{OCM}\)

mà \(\widehat{OBM}=90^0\)

nên \(\widehat{OCM}=90^0\)

=>MC là tiếp tuyến của (O)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
VN
Xem chi tiết
AQ
Xem chi tiết
NK
Xem chi tiết
NK
Xem chi tiết
BT
Xem chi tiết
SN
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết