Cho nửa đường tròn tâm (O) đường kính BC, A là một điểm thuộc nửa dduwwowngf tròn (A khác B,C). Từ A kẻ tiếp tuyến d với đường tròn tâm (O). Kẻ BH,CK cùng vuông góc với d (H,K thuộc d)
a)CM: đường tròn đường kính HK tiếp xúc BC
b) Xác định vị trí của điểm A trên nửa đường tròn để diện tích tứ giác BHKC có diện tích lớn nhất. Tính diện tích lớn nhất đó theo BC
c) Gọi M là tiếp điểm của BC với đường tròn đường kính HK.CM: khi M nằm giữa B và O thì \(\widehat{MAO}=\frac{\cot\widehat{ACB}-\cot\widehat{ABC}}{2}\)
a/ Dễ dàng chứng minh được OA chính là đường trung bình của hình thang HBCK, suy ra A là trung điểm HK => A chính là tâm của đường tròn đường kính HK.
Để chứng minh đường tròn đường kính HK tiếp xúc với BC, ta sẽ chứng minh BC chính là tiếp tuyến của đường tròn (A) tại M hay AM = AK.
Vì HK là tiếp tuyến của (O) tại A nên : \(\widehat{CAK}=\frac{1}{2}\text{sđcungAC}=\widehat{ABC}\left(1\right)\)
Mặt khác, tam giác BAC vuông tại A vì cạnh huyền BC là đường kính của đường tròn (O) . Ta dễ dàng suy ra \(\widehat{ABC}=\widehat{CAM}\left(2\right)\)
Từ (1) và (2) ta có \(\widehat{CAK}=\widehat{CAM}\)
Xét hai tam giác vuông CAM và tam giác vuông CAK có CA là cạnh chung , góc CAM = góc CAK nên \(\Delta CAK=\Delta CAM\left(ch.gn\right)\Rightarrow AK=AM\)
Từ đó suy ra đpcm.
b/ Vì BHKC là hình thang nên \(S_{BHKC}=\frac{\left(BH+CK\right).HK}{2}=OA.HK\)
Từ câu a) ta chứng minh được \(AK=AM\) nên \(HK=2AK=2AM\le2OA\) (hằng số)
=>\(S_{BHKC}\le OA.2OA=2OA^2=2\left(\frac{BC}{2}\right)^2=\frac{BC^2}{2}\) . Dấu "=" xảy ra khi A là điểm chính giữa cung BC.
Vậy ...............................
c/ Đề sai , bởi vì góc MAO có đơn vị độ, còn vế bên phải lại là một tỉ số .
c) Là \(\tan\widehat{MAO}\) nha mink nhầm
@Hoàng Lê Bảo Ngọc