Cho nửa đường tròn tâm O, đường kính AB kẻ các tiếp tuyến Ax,By cùng phía với nửa đường tròn tại E cắt Ax,By lần lượt ở C và D. a)Chứng minh: CD=AC + BD
b) Tính số đo của góc COD
c)Gọi M là giao điểm của OC và AE, N là giao điểm của OD và BE. Tứ giác MENO là hình gì? Vì sao?
Cho nửa đường tròn tâm O, đường kính AB. Kẻ các tiếp tuyến Ax và By với nửa đường tròn (A, B là tiếp điểm). Kẻ tiếp tuyến d với nủa đường tròn (C là tiếp điểm) , d cắt tiếp tuyến Ax và By lần lượt tại D và E
Cho nửa đường tròn (O) đường kính AB. Lấy M∈OA, N∈nửa đường tròn (O). Từ A và B vẽ các tiếp tuyến Ax và By. Đường thẳng qua N và vuông góc với NM cắt Ax tại C, cắt By tại D. Gọi I là giao điểm của AN và CM, K là giao điểm của BN và DM. Chứng minh IK //AB.
Cho ( O ) đường kính AB và điểm C bất kỳ trên đường tròn ( O ) không trùng với A và B . Gọi M và N lần lượt là điểm chính giữa cung nhỏ AC và BC .
a ) Gọi D là hình chiuế của N trên AC . Chứng minh : ND là tiếp tuyến của ( O )
b ) Gọi E là trung điểm BC . Đường thằng OE cắt ( O ) tại K ( Khác N ) . Chứng minh : ADEK là hình bình hành .
c ) Chứng minh : Khi C di chuyển trên ( O ) thì MN luôn tiếp xúc với 1 đường tròn cố định .
Cho nửa đường tròn tâm O đường kính AB.Một điểm C cố định thuộc đoạn thẳng AO (C khác A,O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn tại D . Trên cung BD lấy điểm M(M khác B và D).Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.
1) chứng minh EM=EF
2)Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng, từ đó suy ra góc ABI có số đo góc không đổi khi M di chuyển trên cung BD.
Cho nửa đường tròn tâm O đường kính AB.Một điểm C cố định thuộc đoạn thẳng AO (C khác A,O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn tại D . Trên cung BD lấy điểm M(M khác B và D).Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.
1) chứng minh EM=EF
2)Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng, từ đó suy ra góc ABI có số đo góc không đổi khi M di chuyển trên cung BD.
Cho nửa đường tròn tâm O đường kính AB.Một điểm C cố định thuộc đoạn thẳng AO (C khác A,O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn tại D . Trên cung BD lấy điểm M(M khác B và D).Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.
1) chứng minh EM=EF
2)Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng, từ đó suy ra góc ABI có số đo góc không đổi khi M di chuyển trên cung BD.
Ai giỏi toán giúp em bài này với vẽ hình giúp em
Cho \(\Delta ABC\)nhọn. Đường tròn ( O ) đường kính BC cắt AB, AC lần lượt tại E và D. Các tiếp tuyến của ( O ) tại D và E cắt nhau tại M.
Gọi H là giao điểm của BD và CE. CMR:
a, 4 điểm A, E, H, D cùng thuộc 1 đường tròn. Gọi đường tròn đó là ( I )
b, IE là tiếp tuyến của ( O )
c, AM \(\perp\)BC
Cho nửa đường tròn tâm O, đường kính AB. Kẻ các tiếp tuyến Ax,By cùng phía với nửa đường tròn. Vẽ bán kính OE (E thuộc 1/2(O),E khác A,B). Tiếp tuyến của nửa đường tròn tại E cắt Ax, By lần lượt tại C và D.
a, Cm AC+BD=CD
b, góc COD = 90°
c, Gọi I là giao của OC và EA, K là giao của OD và BE. Tứ giác EIOK là hình gì? Vì sao?
d, Xác định vị trí của bán kính OE để tứ giác EIOK là hình vuông.
GIÚP MÌNH NHÉ!