Bài 1: Phép biến hình

ND

Cho nửa đường tròn tâm O, đường kình AB và M di động trên nửa đường tròn đó. Trên tia AM lấy N sao cho : MN = MB. Dựng hình vuông BMNT. Tìm quỹ tích :

a. Điểm T

b. Điểm N

c. Tâm J của đường tròn

( cần câu b,c thôi ạh)

MP
7 tháng 7 2018 lúc 19:41

b) ta có : \(MB=MN\) ; \(\widehat{BMN}=90^o\) \(\Rightarrow Q_{\left(M;90^o\right)}B=N\)

ta có \(B\) có định và \(M\in\dfrac{1}{2}\left(O;R\right)\) \(\Rightarrow\) \(N\) là tập hợp các điểm thuộc nữa đường tròn \(\left(O';R'\right)\) với \(R'=\sqrt{3R^2}\)

câu c mk đọc cái đề o hiểu (\(J\) là tâm của đường tròn nào)

mới hok chưa bt sâu ; lm có sai sót mong mn thông cảm

Bình luận (7)
MP
7 tháng 7 2018 lúc 20:15

ta có : \(J=\dfrac{NB}{2}\) \(\Rightarrow D_J\left(B\right)=N\)

\(B\) cố định và \(N\in\left(O';R'\right)\) \(\Rightarrow\) \(I\in\left(O'';R''\right)\) \(R''=\dfrac{R^2}{2}\)

Bình luận (2)
MP
7 tháng 7 2018 lúc 21:00

mk cũng có thể lm như thế này :

ta xét 3 trường hợp : \(M\equiv A;M\equiv B;M\in\dfrac{\stackrel\frown{AB}}{2}\)

ta đều thấy các điểm \(N\) đều cách \(M\in\dfrac{\stackrel\frown{AB}}{2}\) một đoạn bằng \(R'\)

\(\Rightarrow\) tập hợp điểm \(N\) là đường tròn \(\left(O';R'\right)\) với \(R'=\sqrt{2R^2}\)

Bình luận (0)
DT
7 tháng 7 2018 lúc 23:02

học lớp 11 cơ à?

Bình luận (1)

Các câu hỏi tương tự
SK
Xem chi tiết
HN
Xem chi tiết
BT
Xem chi tiết
BT
Xem chi tiết
NA
Xem chi tiết
LL
Xem chi tiết
NH
Xem chi tiết
NN
Xem chi tiết
PB
Xem chi tiết